Li et al., 2013 - Google Patents
On timing model extraction and hierarchical statistical timing analysisLi et al., 2013
View PDF- Document ID
- 7969037495462052783
- Author
- Li B
- Chen N
- Xu Y
- Schlichtmann U
- Publication year
- Publication venue
- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
External Links
Snippet
In this paper, we investigate the challenges of applying statistical static timing analysis in hierarchical design flow, where modules supplied by IP vendors are used to hide design details for IP protection and to reduce the complexity of design and verification. For the three …
- 238000004458 analytical method 0 title abstract description 86
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5036—Computer-aided design using simulation for analog modelling, e.g. for circuits, spice programme, direct methods, relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5022—Logic simulation, e.g. for logic circuit operation
- G06F17/5031—Timing analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/504—Formal methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5068—Physical circuit design, e.g. layout for integrated circuits or printed circuit boards
- G06F17/5081—Layout analysis, e.g. layout verification, design rule check
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
- G06F17/505—Logic synthesis, e.g. technology mapping, optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
- G06F17/5018—Computer-aided design using simulation using finite difference methods or finite element methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5045—Circuit design
- G06F17/5054—Circuit design for user-programmable logic devices, e.g. field programmable gate arrays [FPGA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/78—Power analysis and optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/70—Fault tolerant, i.e. transient fault suppression
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/12—Design for manufacturability
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/68—Processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/86—Hardware-Software co-design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3183—Generation of test inputs, e.g. test vectors, patterns or sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
- G01R31/3185—Reconfiguring for testing, e.g. LSSD, partitioning
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Blaauw et al. | Statistical timing analysis: From basic principles to state of the art | |
| Li et al. | On timing model extraction and hierarchical statistical timing analysis | |
| US20130179142A1 (en) | Distributed parallel simulation method and recording medium for storing the method | |
| Salman et al. | Exploiting setup–hold-time interdependence in static timing analysis | |
| Kuehlmann et al. | Transformation-based verification using generalized retiming | |
| Li et al. | Statistical timing analysis and criticality computation for circuits with post-silicon clock tuning elements | |
| Boliolo et al. | Gate-level power and current simulation of CMOS integrated circuits | |
| Jiang et al. | Engineering change order for combinational and sequential design rectification | |
| Zhang et al. | EffiTest2: Efficient delay test and prediction for post-silicon clock skew configuration under process variations | |
| Casaubieilh et al. | Functional verification methodology of Chameleon processor | |
| Li et al. | From process variations to reliability: A survey of timing of digital circuits in the nanometer era | |
| Li et al. | Fast statistical timing analysis for circuits with post-silicon tunable clock buffers | |
| Sapatnekar | Static timing analysis | |
| Manohar | An open source design flow for asynchronous circuits | |
| Srivastava et al. | Interdependent latch setup/hold time characterization via Euler-Newton curve tracing on state-transition equations | |
| Raghunathan et al. | High-level macro-modeling and estimation techniques for switching activity and power consumption | |
| Arslan et al. | Low power design for DSP: methodologies and techniques | |
| US10162917B1 (en) | Method and system for implementing selective transformation for low power verification | |
| Li et al. | On hierarchical statistical static timing analysis | |
| Ahuja et al. | Low Power Design with High-Level Power Estimation and Power-Aware Synthesis | |
| Ducroux et al. | Fast and accurate power annotated simulation: Application to a many-core architecture | |
| Cortadella et al. | Static timing analysis | |
| Li et al. | Statistical timing analysis for latch-controlled circuits with reduced iterations and graph transformations | |
| Drechsler et al. | System level validation using formal techniques | |
| Chattopadhyay et al. | Scaling Up Hardware Accelerator Verification using A-QED with Functional Decomposition |