+

Paul et al., 2022 - Google Patents

EEG based automated detection of six different eye movement conditions for implementation in personal assistive application

Paul et al., 2022

Document ID
6928162126158219558
Author
Paul A
Chakraborty A
Sadhukhan D
Pal S
Mitra M
Publication year
Publication venue
Wireless Personal Communications

External Links

Snippet

Different forms of human expressions are now being extensively used in present-day human– machine interfaces to provide assistive support to the elderly and disabled population. Depending on the subject condition, expressions conveyed in terms of eye movements are …
Continue reading at link.springer.com (other versions)

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/726Details of waveform analysis characterised by using transforms using Wavelet transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/0402Electrocardiography, i.e. ECG
    • A61B5/0452Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/345Medical expert systems, neural networks or other automated diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/0476Electroencephalography
    • A61B5/048Detecting the frequency distribution of signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/32Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
    • G06F19/322Management of patient personal data, e.g. patient records, conversion of records or privacy aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/04012Analysis of electro-cardiograms, electro-encephalograms, electro-myograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7232Signal processing specially adapted for physiological signals or for diagnostic purposes involving compression of the physiological signal, e.g. to extend the signal recording period
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body of parts thereof
    • A61B5/0488Electromyography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00496Recognising patterns in signals and combinations thereof

Similar Documents

Publication Publication Date Title
Kamble et al. A comprehensive survey on emotion recognition based on electroencephalograph (EEG) signals
Maddirala et al. Eye-blink artifact removal from single channel EEG with k-means and SSA
Cai et al. Study on feature selection methods for depression detection using three-electrode EEG data
Shen et al. A novel depression detection method based on pervasive EEG and EEG splitting criterion
Şen et al. A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms
Amrani et al. EEG signal analysis using deep learning: A systematic literature review
Amer et al. EEG signal processing for medical diagnosis, healthcare, and monitoring: A comprehensive review
Ibrahim et al. Deep‐learning‐based seizure detection and prediction from electroencephalography signals
Paul et al. EEG based automated detection of six different eye movement conditions for implementation in personal assistive application
Pradhan et al. A Review on the Applications of Time‐Frequency Methods in ECG Analysis
Ingolfsson et al. Minimizing artifact-induced false-alarms for seizure detection in wearable EEG devices with gradient-boosted tree classifiers
Gu et al. Aoar: an automatic ocular artifact removal approach for multi-channel electroencephalogram data based on non-negative matrix factorization and empirical mode decomposition
Zhang et al. A review of epilepsy detection and prediction methods based on EEG signal processing and deep learning
Jindal et al. Migraine disease diagnosis from EEG signals using Non-linear Feature Extraction Technique
Pal et al. A multi scale time–frequency analysis on electroencephalogram signals
Bahador et al. A correlation-driven mapping for deep learning application in detecting artifacts within the EEG
Gandhi et al. Denoising time series data using asymmetric generative adversarial networks
Bashir et al. A machine learning framework for major depressive disorder (MDD) detection using non-invasive EEG signals
Murad et al. Unveiling thoughts: A review of advancements in eeg brain signal decoding into text
Saini et al. Discriminatory features based on wavelet energy for effective analysis of electroencephalogram during mental tasks
Hassan et al. Review of EEG signals classification using machine learning and deep-learning techniques
Saini et al. State-of-the-art mental tasks classification based on electroencephalograms: a review
Alahmadi et al. Prediction of mild cognitive impairment using EEG signal and BiLSTM network
Reaves et al. Assessment and application of EEG: A literature review
Prakash et al. An efficient approach for denoising EOG artifact through optimal wavelet selection
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载