+

Yang et al., 2009 - Google Patents

Monitoring and uncertainty analysis of feedwater flow rate using data-based modeling methods

Yang et al., 2009

Document ID
6804023378681106000
Author
Yang H
Lee S
Na M
Publication year
Publication venue
IEEE transactions on Nuclear Science

External Links

Snippet

The Venturi flow meters that are being used to measure the feedwater flow rate in most pressurized water reactors are confronted with fouling phenomena, resulting in an overestimation of the flow rate. In this paper, we will therefore develop two soft-sensing …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0229Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions knowledge based, e.g. expert systems; genetic algorithms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • G05B23/0278Qualitative, e.g. if-then rules; Fuzzy logic; Lookup tables; Symptomatic search; FMEA
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • G06N7/005Probabilistic networks

Similar Documents

Publication Publication Date Title
Kim et al. Application of monitoring, diagnosis, and prognosis in thermal performance analysis for nuclear power plants
KR101096793B1 (en) data collecting method for detection and on-time warning system of industrial process
Na et al. Detection and diagnostics of loss of coolant accidents using support vector machines
CN109710661A (en) A Method of Analyzing the State of High Pressure Heater Based on Genetic Simulated Annealing Algorithm
CN111913463B (en) A state monitoring method for chemical volume control system of nuclear power plant
CN111767657B (en) Nuclear power system fault diagnosis method and system
CN117992726B (en) Multi-stage early warning method, device, equipment and medium for rotary machine
No et al. Monitoring severe accidents using AI techniques
CN117469105A (en) Blade icing identification method and system based on conditional variational autoencoder
CN119916788B (en) Controller loop self-diagnosis method, device and equipment
Yang et al. Monitoring and uncertainty analysis of feedwater flow rate using data-based modeling methods
Lee et al. Event diagnosis method for a nuclear power plant using meta-learning
KR102811881B1 (en) Predictive diagnosis method and system of nuclear power plant equipment
Ding et al. Deep Forest‐Based Fault Diagnosis Method for Chemical Process
Lee et al. Diagnostics of loss of coolant accidents using SVC and GMDH models
Sun et al. KPCA-based fault detection and diagnosis model for the chemical and volume control system in nuclear power plants
Kamkar et al. A comparative study of machine learning approaches for identification of perturbed fuel assemblies in WWER-type nuclear reactors
Lim et al. Smart soft-sensing for the feedwater flowrate at PWRs using a GMDH algorithm
Na et al. A smart software sensor for feedwater flow measurement monitoring
Ikonomopoulos et al. Gaussian processes for state identification in pressurized water reactors
Na et al. Inferential sensing and monitoring for feedwater flowrate in pressurized water reactors
CN118152981A (en) Heat exchange station fault diagnosis method and system based on multi-mode data fusion
CN115130564B (en) A method for online monitoring of high-voltage heater based on parallel GMM-LCKSVD
Lee et al. Prediction of DNBR using fuzzy support vector regression and uncertainty analysis
Na et al. A soft-sensing model for feedwater flow rate using fuzzy support vector regression
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载