Jothimani et al., 2023 - Google Patents
Vlsi design of majority logic based wallace tree multiplierJothimani et al., 2023
- Document ID
- 6768276915359586766
- Author
- Jothimani S
- Mugunthan M
- Kishore Kumar M
- Harish Krithik Roshan S
- Publication year
- Publication venue
- 2023 7th International Conference on Computing Methodologies and Communication (ICCMC)
External Links
Snippet
By using the Wallace Tree multipliers architecture and improving the adder in each Wallace Tree phase, reduce the unnecessary latency. The dominant logic primitive was used for addition since it functions more effectively than NAND/NOR/IMPLY primitives. By executing …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/53—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/533—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
- G06F7/5334—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
- G06F7/5336—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/5443—Sum of products
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/50—Adding; Subtracting
- G06F7/505—Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
- G06F7/726—Inversion; Reciprocal calculation; Division of elements of a finite field
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/141—Discrete Fourier transforms
- G06F17/142—Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/38—Indexing scheme relating to groups G06F7/38 - G06F7/575
- G06F2207/3804—Details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/78—Power analysis and optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kumar et al. | Design of high speed vedic multiplier using vedic mathematics techniques | |
| Kumar et al. | Design of High Speed 8-bit Vedic Multiplier using Brent Kung Adders | |
| Mu et al. | Scalable and conflict-free NTT hardware accelerator design: Methodology, proof, and implementation | |
| Meher et al. | Low-Latency, Low-Area, and Scalable Systolic-Like Modular Multipliers for $ GF (2^{m}) $ Based on Irreducible All-One Polynomials | |
| Saha et al. | Improved matrix multiplier design for high‐speed digital signal processing applications | |
| Lakshmi et al. | VLSI architecture for parallel radix-4 CORDIC | |
| Waris et al. | AxSA: On the design of high-performance and power-efficient approximate systolic arrays for matrix multiplication | |
| Kalaiselvi et al. | A modular technique of Booth encoding and Vedic multiplier for low-area and high-speed applications | |
| Panda et al. | VLSI implementation of vedic multiplier using Urdhva–Tiryakbhyam sutra in VHDL environment: A novelty | |
| Kumawat et al. | Design and Comparison of 8x8 Wallace Tree Multiplier using CMOS and GDI Technology | |
| Qureshi et al. | Efficient adders for nano computing: an approach using QCA | |
| Raju et al. | A high speed 16* 16 multiplier based on Urdhva Tiryakbhyam Sutra | |
| Surendran et al. | Implementation of fast multiplier using modified Radix-4 booth algorithm with redundant binary adder for low energy applications | |
| Tolba et al. | FPGA realization of ALU for mobile GPU | |
| Jothimani et al. | Vlsi design of majority logic based wallace tree multiplier | |
| Zhang et al. | HRCIM-NTT: An Efficient Compute-in-Memory NTT Accelerator With Hybrid-Redundant Numbers | |
| Putra et al. | Optimized hardware algorithm for integer cube root calculation and its efficient architecture | |
| Nirmaladevi et al. | Energy efficient parallel hybrid adder architecture for 3X generation in radix-8 booth encoding | |
| Abozaid et al. | A scalable multiplier for arbitrary large numbers supporting homomorphic encryption | |
| Tailor et al. | A Performance Comparison Review of Multiplier Designs | |
| Madhuri et al. | Analysis of reconfigurable multipliers for integer and Galois field multiplication based on high speed adders | |
| Kavitha et al. | High-Performance Wallace Tree Multiplier with Kogge-Stone Adder | |
| Hariri et al. | Digit-level semi-systolic and systolic structures for the shifted polynomial basis multiplication over binary extension fields | |
| Varma et al. | Design a low-latency novel fpga based signed multiplier for communication applications | |
| Bhosale et al. | Optimization of Partial Products in Modified Booth Multiplier |