+

Jiang et al., 2003 - Google Patents

Distributed source model for short-range MIMO

Jiang et al., 2003

View PDF
Document ID
5765440808427214260
Author
Jiang J
Ingram M
Publication year
Publication venue
2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484)

External Links

Snippet

The plane-wave, or point-source, assumption has been used extensively in array signal processing, parameter estimation, and wireless channel modeling to simplify analysis. It is suitable for single-input-single-output (SISO) and single-input/multiple-output (SIMO) …
Continue reading at sarl.ece.gatech.edu (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting aerial units or systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/52Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure
    • H01Q1/521Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q25/00Aerials or aerial systems providing at least two radiating patterns

Similar Documents

Publication Publication Date Title
Jiang et al. Spherical-wave model for short-range MIMO
Oestges et al. Propagation modeling of MIMO multipolarized fixed wireless channels
Almers et al. Survey of channel and radio propagation models for wireless MIMO systems
Wallace et al. Modeling the indoor MIMO wireless channel
US8428171B2 (en) Method for approximating and optimizing gains in capacity and coverage resulting from deployment of multi-antennas in cellular radio networks
US20090041149A1 (en) Multiple input-multiple output communication system
Jiang et al. Distributed source model for short-range MIMO
Harrysson et al. Efficient experimental evaluation of a MIMO handset with user influence
Sarris et al. Design and performance assessment of maximum capacity MIMO architectures in line-of-sight
Quitin et al. A polarized clustered channel model for indoor multiantenna systems at 3.6 GHz
Suvikunnas et al. Comparison of MIMO antenna configurations: Methods and experimental results
Quitin et al. Polarization measurements and modeling in indoor NLOS environments
Bialkowski et al. Investigating the performance of MIMO systems from an electromagnetic perspective
Saleem et al. Investigation of massive MIMO channel spatial characteristics for indoor subway tunnel environment
Yong et al. A three-dimensional spatial fading correlation model for uniform rectangular arrays
Neirynck et al. Exploiting multiple-input multiple-output in the personal sphere
Habib et al. Performance of compact antenna arrays with receive selection
Shen et al. Channel improvement for line-of-sight MIMO using dual-beam reflectarray
Kildal et al. Fundamental limitations on small multi-beam antennas for MIMO systems
Voigt et al. Optimal antenna type selection in a real SU-MIMO network planning scenario
Schützenhöfer et al. Channel rank analysis of an outdoor-to-indoor massive mimo measurement
Strelnikov et al. Environment-Specific Ray-Tracing Channel Modeling in Massive MIMO Systems
Nielsen et al. Performance of Beamforming for a Handheld Device in Measured 21.5 GHz Indoor Channels
Keowsawat et al. Mutual information of MIMO system in a corridor environment based on double directional channel measurement
Gunashekar et al. Utilization of antenna arrays in HF systems.
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载