Gerakos, 2018 - Google Patents
Distributed reservoir sampling algorithms for data pre-processing with use of Kafka StreamsGerakos, 2018
View PDF- Document ID
- 5663372505409320097
- Author
- Gerakos K
- Publication year
External Links
Snippet
With the rapid growth of the Internet of Things (IoT) and with the number of devices expected to connect to it estimated to exceed 30 billion by 2020 and the consequent increase in data transmitted, it is necessary for big data processing systems to use efficient algorithms in …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30533—Other types of queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30477—Query execution
- G06F17/30516—Data stream processing; continuous queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30289—Database design, administration or maintenance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30312—Storage and indexing structures; Management thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogramme communication; Intertask communication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30943—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type
- G06F17/30946—Information retrieval; Database structures therefor; File system structures therefor details of database functions independent of the retrieved data type indexing structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30067—File systems; File servers
- G06F17/30129—Details of further file system functionalities
- G06F17/30144—Details of monitoring file system events, e.g. by the use of hooks, filter drivers, logs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Isah et al. | A survey of distributed data stream processing frameworks | |
| Soumaya et al. | Real-time data stream processing challenges and perspectives | |
| Benjelloun et al. | Big Data Processing: Batch-based processing and stream-based processing | |
| Chen et al. | Towards low-latency big data infrastructure at Sangfor | |
| Lytvyn et al. | Development of Intellectual System for Data De-Duplication and Distribution in Cloud Storage. | |
| Jayanthi et al. | A framework for real-time streaming analytics using machine learning approach | |
| Darius et al. | From Data to Insights: A Review of Cloud-Based Big Data Tools and Technologies | |
| Ikhlaq et al. | Computation of Big Data in Hadoop and Cloud Environment | |
| Tolem et al. | A theoretical study on advances in streaming analytics | |
| Dagli et al. | Big data and Hadoop: a review | |
| Gerakos | Distributed reservoir sampling algorithms for data pre-processing with use of Kafka Streams | |
| Sanila et al. | Real-time mining techniques: a big data perspective for a smart future | |
| Balicki et al. | Harmony search to self-configuration of fault-tolerant grids for big data | |
| Bui | Real-time Data Analytic on Google Cloud: A Complete Data Pipeline from Self-Host Databases to GCP Services | |
| Prashanthi et al. | Generating analytics from web log | |
| Dadheech et al. | Performance improvement of heterogeneous hadoop clusters using query optimization | |
| Peng et al. | Real-time analytics processing with MapReduce | |
| Wang et al. | Research on the Application of Spark Streaming Real-Time Data Analysis System and large language model Intelligent Agents | |
| Manjaly et al. | Various approches to improve MapReduce performance in Hadoop | |
| Ganguli | Convergence of Big Data and Cloud Computing Environment | |
| Mobley et al. | Big Data: Concepts, Techniques, and Considerations | |
| Deshai et al. | An advanced comparison on big data world computing frameworks | |
| Mousavi | Scalable Stream Processing and Management for Time Series Data | |
| Ikhlaq et al. | A comparative study of big data computational approaches | |
| Dräxler | Risikobewertung durch Realtime Datenanalyse mittels Big Data Streaming in AWS Risk assessment through real-time data analysis using Big Data Streaming in AWS |