+

Singh et al., 2007 - Google Patents

Application of extreme learning machine method for time series analysis

Singh et al., 2007

View PDF
Document ID
5598149943972629234
Author
Singh R
Balasundaram S
Publication year
Publication venue
International Journal of Intelligent Technology

External Links

Snippet

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
    • G06N3/0635Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/0454Architectures, e.g. interconnection topology using a combination of multiple neural nets
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • G06N3/082Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/04Architectures, e.g. interconnection topology
    • G06N3/0472Architectures, e.g. interconnection topology using probabilistic elements, e.g. p-rams, stochastic processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • G06N5/046Forward inferencing, production systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/12Computer systems based on biological models using genetic models
    • G06N3/126Genetic algorithms, i.e. information processing using digital simulations of the genetic system
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes

Similar Documents

Publication Publication Date Title
Singh et al. Application of extreme learning machine method for time series analysis
Phaisangittisagul An analysis of the regularization between L2 and dropout in single hidden layer neural network
Tapson et al. Learning the pseudoinverse solution to network weights
Wang et al. Forecasting stochastic neural network based on financial empirical mode decomposition
Cilimkovic Neural networks and back propagation algorithm
Lahmiri Wavelet low-and high-frequency components as features for predicting stock prices with backpropagation neural networks
Widrow et al. The no-prop algorithm: A new learning algorithm for multilayer neural networks
CN1846218B (en) Methods of Forming Artificial Neural Networks
Siqueira et al. Performance comparison of feedforward neural networks applied to streamflow series forecasting.
Jha et al. PSO based neural network for time series forecasting
Budhani et al. Prediction of stock market using artificial neural network
Adhikari et al. A homogeneous ensemble of artificial neural networks for time series forecasting
Gharleghi et al. Predicting exchange rates using a novel “cointegration based neuro-fuzzy system”
Chiroma et al. Neural network intelligent learning algorithm for inter-related energy products applications
Jahnavi Analysis of weather data using various regression algorithms
Wang et al. Diarrhoea outpatient visits prediction based on time series decomposition and multi-local predictor fusion
Ibrahim et al. Basics of artificial neural networks
Vazquez et al. Integrate and fire neurons and their application in pattern recognition
Amadou Boukary A comparison of time series forecasting learning algorithms on the task of predicting event timing
Puteri et al. Comparison of potential telemarketing customers predictions with a data mining approach using the MLPNN and RBFNN methods
Kruglov et al. Neural network modeling of vector multivariable functions in ill-posed approximation problems
Laokondee et al. Quantum Neural Network model for Token allocation for Course Bidding
Nguyen et al. Deep learning for simultaneous imputation and classification of time series incomplete data
Assaad et al. Predicting chaotic time series by boosted recurrent neural networks
Babazadeh A hybrid ARIMA-ANN approach for optimum estimation and forecasting of gasoline consumption
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载