Seo et al., 2009 - Google Patents
A 5-Gbit/s Clock-and Data-Recovery Circuit With 1/8-Rate Linear Phase Detector in 0.18-${\rm\mu}\hbox {m} $ CMOS TechnologySeo et al., 2009
View PDF- Document ID
- 4910793238222482788
- Author
- Seo Y
- Lee J
- Kim H
- Yoo C
- Lee J
- Jeong C
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems II: Express Briefs
External Links
Snippet
With a new 1/8-rate linear phase detector (PD), a 5-Gbit/s clock and data recovery (CDR) circuit is implemented in a digital 0.18-mum CMOS technology. The outputs of the PD have much wider pulse than those of the conventional linear PDs. Thus, the design of circuits …
- 238000011084 recovery 0 title abstract description 10
Classifications
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/089—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
- H03L7/0891—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
- H03L7/0895—Details of the current generators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
- H03L7/0814—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/087—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using at least two phase detectors or a frequency and phase detector in the loop
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
- H03L7/0995—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
- H03L7/0998—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator using phase interpolation
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/093—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/10—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
- H03L7/107—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth
- H03L7/1072—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth by changing characteristics of the charge pump, e.g. changing the gain
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/0802—Details of the phase-locked loop the loop being adapted for reducing power consumption
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/07—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop using several loops, e.g. for redundant clock signal generation
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
- H03K3/027—Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
- H03K3/037—Bistable circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating pulses not covered by one of the other main groups in this subclass
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8442178B2 (en) | Linear phase detector and clock/data recovery circuit thereof | |
| Sidiropoulos et al. | A semidigital dual delay-locked loop | |
| US7203260B2 (en) | Tracked 3X oversampling receiver | |
| US7302026B2 (en) | Clock recovery circuit and electronic device using a clock recovery circuit | |
| US7668277B2 (en) | Apparatus and method for clock data recovery with low lock frequency | |
| US8232844B2 (en) | Synchronous oscillator, clock recovery apparatus, clock distribution circuit, and multi-mode injection circuit | |
| KR100728301B1 (en) | Digitally Controlled Multiphase Clock Generator | |
| Park et al. | A 4–20-Gb/s 1.87-pJ/b continuous-rate digital CDR circuit with unlimited frequency acquisition capability in 65-nm CMOS | |
| JP5332328B2 (en) | Clock and data recovery circuit | |
| US6275555B1 (en) | Digital delay locked loop for adaptive de-skew clock generation | |
| Bae et al. | A 0.36 pJ/bit, 0.025 mm ${}^{\text {2}} $, 12.5 Gb/s Forwarded-Clock Receiver With a Stuck-Free Delay-Locked Loop and a Half-Bit Delay Line in 65-nm CMOS Technology | |
| Lee et al. | A 2.5-10-Gb/s CMOS transceiver with alternating edge-sampling phase detection for loop characteristic stabilization | |
| US8633749B2 (en) | Phase-locked loop (PLL) fail-over circuit technique and method to mitigate effects of single-event transients | |
| Seo et al. | A 5-Gbit/s Clock-and Data-Recovery Circuit With 1/8-Rate Linear Phase Detector in 0.18-${\rm\mu}\hbox {m} $ CMOS Technology | |
| TW200934133A (en) | Delay-locked loop and method thereof | |
| US10972106B1 (en) | Phase and delay compensation circuit and method | |
| KR101202084B1 (en) | A cdr circuit having improved jitter characteristics by using a bang-bang phase detector | |
| Agrawal et al. | An 8$\,\times\, $5 Gb/s Parallel Receiver With Collaborative Timing Recovery | |
| KR101002242B1 (en) | Dual-Rate Clock and Data Recovery Circuits Using Quarter-Rate Linear Phase Detectors | |
| Bae et al. | An all-digital 90-degree phase-shift DLL with loop-embedded DCC for 1.6 Gbps DDR interface | |
| Gimeno et al. | Multilevel half-rate phase detector for clock and data recovery circuits | |
| US7382163B2 (en) | Phase frequency detector used in digital PLL system | |
| US11374578B2 (en) | Zero-offset phase detector apparatus and method | |
| Gimeno et al. | Low-power half-rate dual-loop clock-recovery system in 28-nm FDSOI | |
| KR101264276B1 (en) | Hybrid phase detector and method threrof |