+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Dark matter freeze-in from semi-production

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 03 June 2021
  • Volume 2021, article number 26, (2021)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Dark matter freeze-in from semi-production
Download PDF
  • Andrzej Hryczuk1 &
  • Maxim Laletin  ORCID: orcid.org/0000-0003-3345-34981 
  • 453 Accesses

  • 17 Citations

  • 15 Altmetric

  • 2 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We study a novel dark matter production mechanism based on the freeze-in through semi-production, i.e. the inverse semi-annihilation processes. A peculiar feature of this scenario is that the production rate is suppressed by a small initial abundance of dark matter and consequently creating the observed abundance requires much larger coupling values than for the usual freeze-in. We provide a concrete example model exhibiting such production mechanism and study it in detail, extending the standard formalism to include the evolution of dark matter temperature alongside its number density and discuss the importance of this improved treatment. Finally, we confront the relic density constraint with the limits and prospects for the dark matter indirect detection searches. We show that, even if it was never in full thermal equilibrium in the early Universe, dark matter could, nevertheless, have strong enough present-day annihilation cross section to lead to observable signals.

Article PDF

Download to read the full article text

Similar content being viewed by others

Forbidden frozen-in dark matter

Article Open access 27 November 2019

On thermal production of self-interacting dark matter

Article Open access 19 December 2016

Light(ly)-coupled dark matter in the keV range: freeze-in and constraints

Article Open access 15 March 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Cryospheric Science
  • Cryoelectron Microscopy
  • Dark Energy and Dark Matter
  • Production
  • Production Processes
  • Warm and dense matter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].

  2. B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  3. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    Article  ADS  Google Scholar 

  4. X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Arcadi et al., The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen and V. Vaskonen, The Dawn of FIMP Dark Matter: A Review of Models and Constraints, Int. J. Mod. Phys. A 32 (2017) 1730023 [arXiv:1706.07442] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Heikinheimo and C. Spethmann, Galactic Centre GeV Photons from Dark Technicolor, JHEP 12 (2014) 084 [arXiv:1410.4842] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Heikinheimo, T. Tenkanen and K. Tuominen, Prospects for indirect detection of frozen-in dark matter, Phys. Rev. D 97 (2018) 063002 [arXiv:1801.03089] [INSPIRE].

    Article  ADS  Google Scholar 

  9. F. D’Eramo and J. Thaler, Semi-annihilation of Dark Matter, JHEP 06 (2010) 109 [arXiv:1003.5912] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Z3 Scalar Singlet Dark Matter, JCAP 01 (2013) 022 [arXiv:1211.1014] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Impact of semi-annihilations on dark matter phenomenology — an example of ZN symmetric scalar dark matter, JCAP 04 (2012) 010 [arXiv:1202.2962] [INSPIRE].

    Article  ADS  Google Scholar 

  12. W. Rodejohann and C.E. Yaguna, Scalar dark matter in the B−L model, JCAP 12 (2015) 032 [arXiv:1509.04036] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Y. Cai and A.P. Spray, Fermionic Semi-Annihilating Dark Matter, JHEP 01 (2016) 087 [arXiv:1509.08481] [INSPIRE].

    Article  ADS  Google Scholar 

  14. Y. Cai and A. Spray, Low-Temperature Enhancement of Semi-annihilation and the AMS-02 Positron Anomaly, JHEP 10 (2018) 075 [arXiv:1807.00832] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Kamada, H.J. Kim, H. Kim and T. Sekiguchi, Self-Heating Dark Matter via Semiannihilation, Phys. Rev. Lett. 120 (2018) 131802 [arXiv:1707.09238] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Kamada, H.J. Kim and H. Kim, Self-heating of Strongly Interacting Massive Particles, Phys. Rev. D 98 (2018) 023509 [arXiv:1805.05648] [INSPIRE].

    Article  ADS  Google Scholar 

  17. X. Chu and C. Garcia-Cely, Core formation from self-heating dark matter, JCAP 07 (2018) 013 [arXiv:1803.09762] [INSPIRE].

    Article  ADS  Google Scholar 

  18. F. Takahashi, Gravitino dark matter from inflaton decay, Phys. Lett. B 660 (2008) 100 [arXiv:0705.0579] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Garny, M. Sandora and M.S. Sloth, Planckian Interacting Massive Particles as Dark Matter, Phys. Rev. Lett. 116 (2016) 101302 [arXiv:1511.03278] [INSPIRE].

    Article  ADS  Google Scholar 

  20. Y. Mambrini and K.A. Olive, Gravitational Production of Dark Matter during Reheating, arXiv:2102.06214 [INSPIRE].

  21. T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. 790 (2008) 336] [hep-ph/0012052] [INSPIRE].

  23. L. Darmé, A. Hryczuk, D. Karamitros and L. Roszkowski, Forbidden frozen-in dark matter, JHEP 11 (2019) 159 [arXiv:1908.05685] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Biondini and J. Ghiglieri, Freeze-in produced dark matter in the ultra-relativistic regime, JCAP 03 (2021) 075 [arXiv:2012.09083] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  25. P. Asadi, E.D. Kramer, E. Kuflik, G.W. Ridgway, T.R. Slatyer and J. Smirnov, Thermal Squeezeout of Dark Matter, arXiv:2103.09827 [INSPIRE].

  26. O. Lebedev, The Higgs Portal to Cosmology, arXiv:2104.03342 [INSPIRE].

  27. G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].

    Article  ADS  Google Scholar 

  28. O. Lebedev and T. Toma, Relativistic Freeze-in, Phys. Lett. B 798 (2019) 134961 [arXiv:1908.05491] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  29. S. Heeba, F. Kahlhoefer and P. Stöcker, Freeze-in production of decaying dark matter in five steps, JCAP 11 (2018) 048 [arXiv:1809.04849] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G. Bélanger, C. Delaunay, A. Pukhov and B. Zaldivar, Dark matter abundance from the sequential freeze-in mechanism, Phys. Rev. D 102 (2020) 035017 [arXiv:2005.06294] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails, Phys. Rev. D 96 (2017) 115010 [Erratum ibid. 101 (2020) 099901] [arXiv:1706.07433] [INSPIRE].

  32. T. Binder, T. Bringmann, M. Gustafsson and A. Hryczuk, DRAKE: Dark matter Relic Abundance beyond Kinetic Equilibrium, arXiv:2103.01944 [INSPIRE].

  33. A. Hektor, A. Hryczuk and K. Kannike, Improved bounds on ℤ3 singlet dark matter, JHEP 03 (2019) 204 [arXiv:1901.08074] [INSPIRE].

    Article  ADS  Google Scholar 

  34. L.G. van den Aarssen, T. Bringmann and Y.C. Goedecke, Thermal decoupling and the smallest subhalo mass in dark matter models with Sommerfeld-enhanced annihilation rates, Phys. Rev. D 85 (2012) 123512 [arXiv:1202.5456] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P.J. Fitzpatrick, H. Liu, T.R. Slatyer and Y.-D. Tsai, New Pathways to the Relic Abundance of Vector-Portal Dark Matter, arXiv:2011.01240 [INSPIRE].

  36. G. Arcadi, O. Lebedev, S. Pokorski and T. Toma, Real Scalar Dark Matter: Relativistic Treatment, JHEP 08 (2019) 050 [arXiv:1906.07659] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Bringmann and S. Hofmann, Thermal decoupling of WIMPs from first principles, JCAP 04 (2007) 016 [Erratum ibid. 03 (2016) E02] [hep-ph/0612238] [INSPIRE].

  38. T. Binder, L. Covi, A. Kamada, H. Murayama, T. Takahashi and N. Yoshida, Matter Power Spectrum in Hidden Neutrino Interacting Dark Matter Models: A Closer Look at the Collision Term, JCAP 11 (2016) 043 [arXiv:1602.07624] [INSPIRE].

    Article  ADS  Google Scholar 

  39. N. Bernal, Boosting Freeze-in through Thermalization, JCAP 10 (2020) 006 [arXiv:2005.08988] [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal Extension of the Standard Model Scalar Sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].

  41. M.W. Winkler, Decay and detection of a light scalar boson mixing with the Higgs boson, Phys. Rev. D 99 (2019) 015018 [arXiv:1809.01876] [INSPIRE].

    Article  ADS  Google Scholar 

  42. CHARM collaboration, Search for Axion Like Particle Production in 400-GeV Proton-Copper Interactions, Phys. Lett. B 157 (1985) 458 [INSPIRE].

  43. E949 collaboration, New measurement of the K+ → \( {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].

  44. LHCb collaboration, Search for long-lived scalar particles in B+ → K+χ(μ+μ−) decays, Phys. Rev. D 95 (2017) 071101 [arXiv:1612.07818] [INSPIRE].

  45. LHCb collaboration, Search for hidden-sector bosons in B0 → K*0μ+μ− decays, Phys. Rev. Lett. 115 (2015) 161802 [arXiv:1508.04094] [INSPIRE].

  46. A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev. D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].

    Article  ADS  Google Scholar 

  47. G. Krnjaic, Probing Light Thermal Dark-Matter With a Higgs Portal Mediator, Phys. Rev. D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].

    Article  ADS  Google Scholar 

  48. FASER collaboration, FASER’s physics reach for long-lived particles, Phys. Rev. D 99 (2019) 095011 [arXiv:1811.12522] [INSPIRE].

  49. SHiP collaboration, A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].

  50. MATHUSLA collaboration, An Update to the Letter of Intent for MATHUSLA: Search for Long-Lived Particles at the HL-LHC, arXiv:2009.01693 [INSPIRE].

  51. G. Lanfranchi, M. Pospelov and P. Schuster, The Search for Feebly-Interacting Particles, arXiv:2011.02157 [INSPIRE].

  52. MAGIC and Fermi-LAT collaborations, Limits to Dark Matter Annihilation Cross-Section from a Combined Analysis of MAGIC and Fermi-LAT Observations of Dwarf Satellite Galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].

  53. CTA collaboration, Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre, JCAP 01 (2021) 057 [arXiv:2007.16129] [INSPIRE].

  54. A. Cuoco, B. Eiteneuer, J. Heisig and M. Krämer, A global fit of the γ-ray galactic center excess within the scalar singlet Higgs portal model, JCAP 06 (2016) 050 [arXiv:1603.08228] [INSPIRE].

    Article  ADS  Google Scholar 

  55. T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev. D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].

  56. G. Arcadi, F.S. Queiroz and C. Siqueira, The Semi-Hooperon: Gamma-ray and anti-proton excesses in the Galactic Center, Phys. Lett. B 775 (2017) 196 [arXiv:1706.02336] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Kamada and H.J. Kim, Escalating core formation with dark matter self-heating, Phys. Rev. D 102 (2020) 043009 [arXiv:1911.09717] [INSPIRE].

    Article  ADS  Google Scholar 

  58. T. Bringmann, P.F. Depta, M. Hufnagel, J.T. Ruderman and K. Schmidt-Hoberg, Pandemic Dark Matter, arXiv:2103.16572 [INSPIRE].

  59. http://github.com/dkaramit/BoltzmannEquation.

Download references

Author information

Authors and Affiliations

  1. National Centre for Nuclear Research, Pasteura 7, 02-093, Warsaw, Poland

    Andrzej Hryczuk & Maxim Laletin

Authors
  1. Andrzej Hryczuk
    View author publications

    Search author on:PubMed Google Scholar

  2. Maxim Laletin
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Maxim Laletin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2104.05684

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hryczuk, A., Laletin, M. Dark matter freeze-in from semi-production. J. High Energ. Phys. 2021, 26 (2021). https://doi.org/10.1007/JHEP06(2021)026

Download citation

  • Received: 30 April 2021

  • Revised: 17 May 2021

  • Accepted: 24 May 2021

  • Published: 03 June 2021

  • Version of record: 03 June 2021

  • DOI: https://doi.org/10.1007/JHEP06(2021)026

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载