- This is the 2025 iteration of the course, materials are added as we prepare them. For full 2025 course materials, go to this branch
- Lecture and seminar materials for each week are in ./week* folders, see README.md for materials and instructions
- Any technical issues, ideas, bugs in course materials, contribution ideas - add an issue
- Installing libraries and troubleshooting: this thread.
-
week01 Word Embeddings
- Lecture: Word embeddings. Distributional semantics. Count-based (pre-neural) methods. Word2Vec: learn vectors. GloVe: count, then learn. Evaluation: intrinsic vs extrinsic. Analysis and Interpretability. Interactive lecture materials and more.
- Seminar: Playing with word and sentence embeddings
- Homework: Embedding-based machine translation system
-
week02 Language Modeling
- Lecture: Language Modeling: what does it mean? Left-to-right framework. N-gram language models. Neural Language Models: General View, Recurrent Models, Convolutional Models. Evaluation. Practical Tips: Weight Tying. Analysis and Interpretability. Interactive lecture materials and more.
- Seminar: Build a N-gram language model from scratch
- Homework: Neural LMs & smoothing in count-based models.
-
TBU
./week03_attention
Seq2seq and Attention- Lecture: Seq2seq Basics: Encoder-Decoder framework, Training, Simple Models, Inference (e.g., beam search). Attention: general, score functions, models. Transformer: self-attention, masked self-attention, multi-head attention; model architecture. Subword Segmentation (BPE). Analysis and Interpretability: functions of attention heads; probing for linguistic structure. Interactive lecture materials and more.
- Seminar: Basic sequence to sequence model
- Homework: Machine translation with attention
-
TBU
./week04_transfer
Transfer Learning- Lecture: What is Transfer Learning? Great idea 1: From Words to Words-in-Context (CoVe, ELMo). Great idea 2: From Replacing Embeddings to Replacing Models (GPT, BERT). (A Bit of) Adaptors. Analysis and Interpretability. Interactive lecture materials and more.
- Homework: fine-tuning a pre-trained BERT model
-
TBU
./week06_llm
Large Language Models- Lecture: Scaling laws. Emergent abilities. Prompting (aka "in-context learning"): techiques that work; questioning whether model "understands" prompts. Hypotheses for why and how in-context learning works. Analysis and Interpretability.
- Homework: manual prompt engneering and chain-of-thought reasoning
-
Additional lectures to be announced!
Course materials and teaching performed by
- Elena Voita - course author
- [Mikhail Diskin] [Ignat Romanov] [Ruslan Svirschevski] - lectures
- Valentina Broner - course admin for on-campus students
- Boris Kovarsky, David Talbot, Sergey Gubanov, Just Heuristic - help build course materials and/or held some classes
- 30+ volunteers who contributed and refined the notebooks and course materials. Without their help, the course would not be what it is today
- A mighty host of TAs who stoically grade hundreds of homework submissions from on-campus students each year