You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Multi-Stage-Multi-Armed Bandits (MAB) are a class of reinforcement learning problems where an agent tries to maximize its cumulative reward by sequentially selecting actions from multiple options (arms) and observing the rewards associated with those actions.
This literature review delves into the world of multi-armed bandit problems, exploring their applications and solutions in sequential decision-making scenarios