+
Skip to content
#

mlxtend

Here are 52 public repositories matching this topic...

Python project for Market Basket Analysis. Generates synthetic retail transactions, mines frequent itemsets using Apriori & FP-Growth, derives association rules, and outputs CSVs + visualizations. Portfolio-ready example demonstrating data science methods for uncovering product co-purchase patterns.

  • Updated Oct 1, 2025
  • Python

Association-Rules-Data-Mining-Books. Apriori Algorithm, Association rules with 10% Support and 70% confidence, Association rules with 20% Support and 60% confidence, Association rules with 5% Support and 80% confidence, visualization of obtained rule.

  • Updated Jan 7, 2022
  • Jupyter Notebook

Using different Association Rule Mining Algorithms to establish rules between item(s) from a transactional data. 3 different algorithms were used to generate itemsets and generate candidate rules from them based on certain metrics. Link to the dataset is given below.

  • Updated Jun 11, 2025
  • Jupyter Notebook

This project performs association analysis on a sales dataset, using the Apriori algorithm. The dataset is loaded from an Excel file, and a basket of items is created for each transaction. The Apriori algorithm is then applied to find frequent itemsets and association rules based on the support, confidence, and lift metrics.

  • Updated Jun 2, 2025
  • Jupyter Notebook

Предоставлен файл с сервера. Вам нужно спарсить его содержимое, создать базу данных под данные, вставить данные в базу данных, удаленно подключиться к базе данных и проанализировать данные.

  • Updated Oct 19, 2022
  • Jupyter Notebook

Assignment-09-Association-Rules-Data-Mining-my_movies. Apriori Algorithm. Association rules with 10% Support and 70% confidence. Association rules with 5% Support and 90% confidence. Lift Ratio > 1 is a good influential rule in selecting the associated transactions. Visualization of obtained rule.

  • Updated Aug 10, 2021
  • Jupyter Notebook

Apriori Algorithm Association rules with 10% Support and 70% confidence Association rules with 5% Support and 90% confidence Lift Ratio > 1 is a good influential rule in selecting the associated transactions visualization of obtained rule

  • Updated Jan 7, 2022
  • Jupyter Notebook

Improve this page

Add a description, image, and links to the mlxtend topic page so that developers can more easily learn about it.

Curate this topic

Add this topic to your repo

To associate your repository with the mlxtend topic, visit your repo's landing page and select "manage topics."

Learn more

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载