You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Mask R-CNN Model to detect the area of damage on a car. The rationale for such a model is that it can be used by insurance companies for faster processing of claims if users can upload pics and they can assess damage from them. This model can also be used by lenders if they are underwriting a car loan especially for a used car.
A deep learning–based computer vision training pipeline for car damage detection using a Co-DETR learner enhanced with CBAM Attention, Hybrid Loss, and Albumentations. Trains on Colab to identify and localize car body defects such as scratches, dents, and rust. Includes end-to-end model training and quantitative evaluation.
# Car Damage Detection using Detectron2 This project leverages **Detectron2**, a state-of-the-art object detection library, to detect car damages from images. The goal is to develop a model that can automatically identify and classify car damages, such as dents, scratches