+
Skip to content

tianlwang/Magical

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Magical: Medical Lay Language Generation via Semantic Invariance and Layperson-tailored Adaptation

This repository provides the code for the paper Magical: Medical Lay Language Generation via Semantic Invariance and Layperson-tailored Adaptation overview

Environment Setup

Create a Python virtual environment and install the dependencies:

conda create -n magical python=3.11 -y
conda activate magical
pip install -e .

Workflow

1.Collect Activations: collect activations of expert text and lay text with the following command:

cd scripts
python extract.py \
   --model_name meta-llama/Llama-3.1-8B-Instruct \
   --datasets "['elife', 'cochrane', 'genetics']"

2.Semantic-Relevant Layer Identification: train probes to identify semantic-relevant layer with the following command:

python train_probes.py \
    --data_dir ../data/probes/Llama-3.1-8B-Instruct

3.Train Magical: train with the following command:

deepspeed train.py \
    --model_name "meta-llama/Llama-3.1-8B-Instruct" \
    --datasets "['elife', 'cochrane', 'genetics']" \
    --max_seq_len 2048 \
    --num_workers 16 \
    --output_dir ../out \
    --logging_steps 2 \
    --save_steps 100 \
    --wandb_enable \
    --wandb_run_name "elife_cochrane_genetics" \
    --num_train_epochs 5 \
    --per_device_train_batch_size 8 \
    --gradient_accumulation_steps 1 \
    --learning_rate 1e-4 \
    --weight_decay 0 \
    --warmup_steps 100 \
    --gradient_clipping 1.0 \
    --lora_r 8 \
    --num_loras 3 \
    --target_modules "['up_proj','down_proj','gate_proj','q_proj','v_proj','o_proj','k_proj']" \
    --contrastive_loss_weight 0.5 \
    --contrastive_temp 0.5 \
    --contrastive_targets_path "../data/probes/Llama-3.1-8B-Instruct/contrastive_targets.pkl" \
    --num_contrastive_targets 32 \
    --deepspeed_config ../configs/deepspeed_zero2_offload_bf16.json

Citation

If you find this repo useful, please kindly cite our paper.

@misc{liao2025magicalmedicallaylanguage,
      title={Magical: Medical Lay Language Generation via Semantic Invariance and Layperson-tailored Adaptation}, 
      author={Weibin Liao and Tianlong Wang and Yinghao Zhu and Yasha Wang and Junyi Gao and Liantao Ma},
      year={2025},
      eprint={2508.08730},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2508.08730}, 
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载