+
Skip to content

FaultGNN: A Graph Neural Network Approach for Intermittent Fault Diagnosis in Multiprocessor Systems

Notifications You must be signed in to change notification settings

shuangxiangkan/FaultGNN

Repository files navigation

FaultGNN: A Graph Attention Network-Based Approach for System-Level Intermittent Fault Diagnosis

This repository contains the implementation of FaultGNN, a Graph Attention Network-Based Approach for System-Level Intermittent Fault Diagnosis

🚀 Quick Start

Local Installation

Requirements:

  • Python >= 3.10 (Python 3.10 or higher required)
  • PyTorch >= 1.9.0
  • PyTorch Geometric >= 2.0.0
# Clone the repository
git clone https://github.com/shuangxiangkan/FaultGNN.git
cd FaultGNN

# Create virtual environment with Python 3.10+ (REQUIRED)
python3 -m venv pyg_env
source pyg_env/bin/activate  # On Windows: pyg_env\Scripts\activate

# Verify Python version
python --version  # Should show Python 3.10 or higher

# Install dependencies
pip install -r requirements.txt

📋 Running Model Comparison Experiments

Using run_comparison.py

Script for comparing FaultGNN and RNNIFDCOM model performance.

Basic Usage

# Activate virtual environment
source pyg_env/bin/activate

# Run with default parameters
python run_comparison.py

# View all parameters
python run_comparison.py --help

Usage Examples

# Custom graph size and fault configuration (10 dimensional hypercube with 8 fault nodes)
python run_comparison.py --n 10 --fault_count 8

About

FaultGNN: A Graph Neural Network Approach for Intermittent Fault Diagnosis in Multiprocessor Systems

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载