PER(Prioritized Experience Replay) implementation in PyTorch
Add files via upload: cartpole_per.ipynb
- 目录不存在则创建
- bool_break 替换 sys.exit()
解决由于数据精度限制造成计算误差所带来的空值采样,如果采样为空值,则重新采样。
相关代码:
# last one -- ai@inksci.com
i = n-1
data = 0
while data==0:
# 重新采样
s = random.uniform(a, b)
(idx, p, data) = self.tree.get(s)
priorities.append(p)
batch.append(data)
idxs.append(idx)