+
Skip to content

First release

Latest
Compare
Choose a tag to compare
@hj-n hj-n released this 14 Jun 15:53

[0.1.0] - 2025-06-14

Added

  • Initial release of PyIVM (Python Library for Clustering Quality Metrics)
  • Implementation of six essential clustering validation metrics:
    • Calinski-Harabasz Index
    • Davies-Bouldin Index
    • Dunn Index
    • I-Index
    • Silhouette Coefficient
    • Xie-Beni Index
  • Support for both original and adjusted forms of all metrics
  • Adjusted metrics provide bias-free evaluation and consistent "higher = better" interpretation
  • Simple API compatible with scikit-learn and numpy arrays
  • Comprehensive test suite with sanity checks
  • Support for Python 3.9+
  • Dependencies: NumPy, SciPy, scikit-learn, pandas
  • Complete documentation with usage examples
  • Poetry-based project structure for easy development
  • MIT License

Features

  • All metrics follow consistent pyivm.metric_name(X, labels, adjusted=False) API
  • Adjusted metrics enable fair comparison across different numbers of clusters
  • Simple installation via pip install pyivm
  • Comprehensive README with quick start guide and API reference

Technical Details

  • Based on research published in IEEE TPAMI 2025
  • Implements theoretical foundations for adjusted clustering validation metrics
  • Optimized for performance with NumPy and SciPy backends
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载