Releases: hj-n/pyivm
Releases · hj-n/pyivm
First release
[0.1.0] - 2025-06-14
Added
- Initial release of PyIVM (Python Library for Clustering Quality Metrics)
- Implementation of six essential clustering validation metrics:
- Calinski-Harabasz Index
- Davies-Bouldin Index
- Dunn Index
- I-Index
- Silhouette Coefficient
- Xie-Beni Index
- Support for both original and adjusted forms of all metrics
- Adjusted metrics provide bias-free evaluation and consistent "higher = better" interpretation
- Simple API compatible with scikit-learn and numpy arrays
- Comprehensive test suite with sanity checks
- Support for Python 3.9+
- Dependencies: NumPy, SciPy, scikit-learn, pandas
- Complete documentation with usage examples
- Poetry-based project structure for easy development
- MIT License
Features
- All metrics follow consistent
pyivm.metric_name(X, labels, adjusted=False)
API - Adjusted metrics enable fair comparison across different numbers of clusters
- Simple installation via
pip install pyivm
- Comprehensive README with quick start guide and API reference
Technical Details
- Based on research published in IEEE TPAMI 2025
- Implements theoretical foundations for adjusted clustering validation metrics
- Optimized for performance with NumPy and SciPy backends