- RCaml: A refinement type checking and inference tool for OCaml and HFL
- EffCaml: A transformation-based verifier for effectful OCaml programs
- MuVal: A fixpoint logic validity checker based on pfwCSP solving
- MuCyc: A fixpoint logic validity checker based on cyclic-proof search
- PCSat: A CHC/pfwnCSP/SyGuS solver based on CEGIS
- OptPCSat: An optimizing CHC solver based on pfwnCSP solving
- HOMCSat: A SAT/QSAT/DQSAT/HOSAT solver based on higher-order model checking
An overview of the fixed-point logic solvers MuVal, MuStrat, and MuCyc for
- Install opam2 (see the official webpage).
- Install ocaml-5.3.0:
opam switch create 5.3.0
- Install dune:
opam install dune
- Install required packages:
(You may also need to install
opam install . --deps-only
libblas-dev
,liblapack-dev
,libmpfr-dev
,libgmp-dev
,libglpk-dev
,libffi-dev
, andpkg-config
) - Build:
dune build main.exe
- Run:
./_build/default/main.exe -c <config_file> -p <problem_type> <target_file>
- Build & Run:
dune exec main -- -c <config_file> -p <problem_type> <target_file>
- Document generation (to
_build/default/_doc/_html
):opam install odoc dune build @doc
core
core_unix
domainslib
menhir
ppx_deriving_yojson
ocaml-compiler-libs
ocamlgraph
zarith
z3
minisat
libsvm
with some modification (https://github.com/hiroshi-unno/libsvm-ocaml.git)camlzip
hoice
(https://github.com/hopv/hoice)clang
(https://clang.llvm.org/)llvm2kittel
(https://github.com/gyggg/llvm2kittel/tree/kou)ltl3ba
(https://sourceforge.net/projects/ltl3ba/)horsat2
(https://github.com/hopv/horsat2)polyqent
(https://github.com/ChatterjeeGroup-ISTA/polyqent)
docker pull docker.io/library/ubuntu:24.10
docker pull docker.io/ocaml/opam:ubuntu-24.10-ocaml-5.3
sudo docker build -t coar .
./_build/default/main.exe -c ./config/solver/dbg_rcaml_pcsat_tbq_ar.json -p ml ./benchmarks/OCaml/safety/simple/sum.ml
./_build/default/main.exe -c ./config/solver/dbg_rcaml_spacer.json -p ml ./benchmarks/OCaml/safety/simple/sum.ml
./_build/default/main.exe -c ./config/solver/dbg_rcaml_temp_eff_pcsat_tbq_ar.json -p ml ./benchmarks/OCaml/temporal/sum_term.ml
Build horsat2
and place it in the current directory.
./_build/default/main.exe -c ./config/solver/dbg_effcaml.json -p ml ./benchmarks/OCaml/oopsla24/mutable_set_not_b_false_UNSAT.ml
Build ltl3ba
and place it in the current directory.
./_build/default/main.exe -c ./config/solver/dbg_muval_parallel_exc_tbq_ar.json -p cltl ./benchmarks/C/cav2015ltl/coolant/coolant_basis_1_safe_sfty.c
Please download and use the benchmark set of Ultimate LTL Automizer.
./_build/default/main.exe -c ./config/solver/dbg_muval_parallel_exc_tbq_ar.json -p cctl ./benchmarks/C/pldi2013ctl/industrial/1-acqrel-AGimpAF-succeed.c
Please obtain and use the benchmark set from the following paper:
- Byron Cook and Eric Koskinen. Reasoning about nondeterminism in programs. PLDI 2013.
./_build/default/main.exe -c ./config/solver/dbg_muval_parallel_exc_tbq_ar.json -p ltsterm ./benchmarks/LTS/simple/test.t2
./_build/default/main.exe -c ./config/solver/dbg_muval_parallel_exc_tbq_ar.json -p ltsnterm ./benchmarks/LTS/simple/test.t2
./_build/default/main.exe -c ./config/solver/muval_prove_tbq_ar.json -p ltsterminter ./benchmarks/LTS/simple/prog2.t2
The following interaction example demonstrates conditional termination analysis, which proves that the program prog2.c terminates when the initial value of the variable x
is 9 or less, and diverges otherwise.
timeout in sec: 10
action (primal/dual/unknown/pos/neg/end): primal
v0 <= 8 /\ v0 >= 2
action (primal/dual/unknown/pos/neg/end): primal
1 > v0 \/ v0 <= 8 /\ v0 >= 2
action (primal/dual/unknown/pos/neg/end): primal
v0 <= 9 /\ v0 > 8 \/ 1 > v0 \/ v0 <= 8 /\ v0 >= 2
action (primal/dual/unknown/pos/neg/end): dual
v0 mod 2 != 0 /\ v0 >= 10
action (primal/dual/unknown/pos/neg/end): dual
v0 >= 10
action (primal/dual/unknown/pos/neg/end): primal
v0 <= 9
maximality is guaranteed
Here, the primal
(resp. dual
) action lets MuVal infer a precondition under which the program terminates (resp. diverges), but note that MuVal does not necessarily return the weakest precondition. By repeating sets of primal
and dual
actions, it is finally proved that the program terminates if and only if the initial value of the variable x
is 9 or less.
Predicate Constraint Satisfiability Checking (CHC, $\forall\exists$ CHC, pCSP, and pfwnCSP) using PCSat
./_build/default/main.exe -c ./config/solver/dbg_pcsat_tbq_ar.json -p pcsp ./benchmarks/CHC/simple/sum.smt2
./_build/default/main.exe -c ./config/solver/dbg_pcsat_tbq_ar.json -p pcsp ./benchmarks/AECHC/bar.smt2
./_build/default/main.exe -c ./config/solver/dbg_pcsat_tbq_ar.json -p pcsp ./benchmarks/pfwnCSP/simple/max.clp
git submodule update --init benchmarks/sygus-comp/
./_build/default/main.exe -c ./config/solver/dbg_pcsat_tbq_ar.json -p sygus ./benchmarks/sygus-comp/comp/2017/CLIA_Track/fg_max2.sl
./_build/default/main.exe -c ./config/solver/dbg_pcsat_tbq_ar.json -p pcsp ./benchmarks/SyGuS/regex/ex1.smt2
./_build/default/main.exe -c ./config/solver/dbg_optpcsat_nc_tbq_ar.json -p chcmax ./benchmarks/CHC/popl2023opt/test2.smt2
./_build/default/main.exe -c ./config/solver/dbg_muval_prove_tbq_ar.json -p muclp ./benchmarks/muCLP/popl2023mod/sas2019_ctl1.hes
./_build/default/main.exe -c ./config/solver/dbg_muval_disprove_tbq_ar.json -p muclp ./benchmarks/muCLP/popl2023mod/sas2019_ctl2b-invalid.hes
./_build/default/main.exe -c ./config/solver/dbg_muval_parallel_tbq_ar.json -p muclp ./benchmarks/muCLP/popl2023mod/sas2019_ctl1.hes
./_build/default/main.exe -c ./config/solver/dbg_muval_parallel_exc_tbq_ar.json -p muclp ./benchmarks/muCLP/popl2023mod/sas2019_ctl1.hes
./_build/default/main.exe -c ./config/solver/muval_prove_nonopt_tbq_ar.json -p muclpinter ./benchmarks/muCLP/popl2023mod/sas2019_lines1.hes
The following is an example of using MuVal to interactively prove that there is no input that satisfies the given
timeout in sec: 10
action (primal/dual/unknown/pos/neg/end): dual
m mod 2 = 0 /\ m <= 0 /\ m - n >= 0 /\ 1 > m - n
action (primal/dual/unknown/pos/neg/end): pos
positive examples: m > 0
action (primal/dual/unknown/pos/neg/end): dual
m >= 1 \/ m mod 2 = 0 /\ m - n >= 0 /\ 1 > m - n
action (primal/dual/unknown/pos/neg/end): unknown
1 > m /\ (0 > m - n \/ m mod 2 != 0 \/ 1 <= m - n)
action (primal/dual/unknown/pos/neg/end): pos
positive examples: 1 > m /\ 1 <= m - n
action (primal/dual/unknown/pos/neg/end): dual
m >= 1 \/ 0 > n - m \/ m mod 2 = 0 /\ m - n >= 0
action (primal/dual/unknown/pos/neg/end): unknown
0 <= n - m /\ 1 > m /\ (m mod 2 != 0 \/ 0 > m - n)
action (primal/dual/unknown/pos/neg/end): pos
positive examples: 0 <= n - m /\ 1 > m /\ m mod 2 != 0
action (primal/dual/unknown/pos/neg/end): dual
m - n >= 0 \/ m mod 2 != 0 \/ m >= 1
action (primal/dual/unknown/pos/neg/end): unknown
m mod 2 = 0 /\ 0 > m - n /\ 1 > m
action (primal/dual/unknown/pos/neg/end): pos
positive examples: m mod 2 = 0 /\ 0 > m - n /\ 1 > m
action (primal/dual/unknown/pos/neg/end): dual
true
maximality is guaranteed
Here, the dual
action lets MuVal infer a precondition under which the query does not hold, but note that MuVal does not necessarily return the weakest precondition. Before performing the dual
action, hints about an input range that should be included in the weakest precondition are provided through the pos
action. By repeating sets of pos
and dual
actions, it is finally proved that there is no input that satisfies the given
Build PolyQEnt
and place it to run as ./polyqent/PolyQEnt
.
./_build/default/main.exe -c ./config/solver/dbg_muval_prob_polyqent_deg3.json -p prob-muclp ./benchmarks/muCLP/probabilistic/ert_random_walk_2nd_lb.phes
./_build/default/main.exe -c ./config/solver/mucyc_returnF_mbp0_indNF.json -p pcsp ./benchmarks/CHC/simple/sum.smt2
./_build/default/main.exe -c ./config/solver/mucyc_yieldTT_mbp1_indNF.json -p pcsp ./benchmarks/CHC/simple/sum.smt2
./_build/default/main.exe -c ./config/solver/mucyc_returnF_mbp0.json -p pcsp ./benchmarks/CHC/simple/sum.smt2
./_build/default/main.exe -c ./config/solver/mucyc_yieldTT_mbp1.json -p pcsp ./benchmarks/CHC/simple/sum.smt2
./_build/default/main.exe -c ./config/solver/mucyc.json -p pcsp ./benchmarks/CHC/simple/sum.smt2
Build horsat2
and place it in the current directory.
./_build/default/main.exe -c ./config/solver/dbg_homcsat.json -p sat ./benchmarks/SAT/easy2.dimacs
./_build/default/main.exe -c ./config/solver/dbg_homcsat.json -p dqsat ./benchmarks/QSAT/test.qdimacs
./_build/default/main.exe -c ./config/solver/dbg_homcsat.json -p dqsat ./benchmarks/QSAT/test.dqdimacs
./_build/default/main.exe -c ./config/solver/dbg_homcsat.json -p hosat ./benchmarks/HOSAT/AAAI2025/cps-arity1_ord3.hosat
-
Taro Sekiyama and Hiroshi Unno. Algebraic Temporal Effects: Temporal Verification of Recursively Typed Higher-Order Programs. POPL 2025.
-
Satoshi Kura and Hiroshi Unno. Automated Verification of Higher-Order Probabilistic Programs via a Dependent Refinement Type System. ICFP 2024.
-
Fuga Kawamata, Hiroshi Unno, Taro Sekiyama, and Tachio Terauchi. Answer Refinement Modification: Refinement Type System for Algebraic Effects and Handlers. POPL 2024.
-
Taro Sekiyama and Hiroshi Unno. Temporal Verification with Answer-Effect Modification. POPL 2023.
-
Yoji Nanjo, Hiroshi Unno, Eric Koskinen, and Tachio Terauchi. A Fixpoint Logic and Dependent Effects for Temporal Property Verification. LICS 2018
-
Hiroshi Unno, Yuki Satake, and Tachio Terauchi. Relatively Complete Refinement Type System for Verification of Higher-Order Non-deterministic Programs. POPL 2018.
-
Kodai Hashimoto and Hiroshi Unno. Refinement Type Inference via Horn Constraint Optimization. SAS 2015.
-
Hiroshi Unno, Tachio Terauchi, and Naoki Kobayashi. Automating Relatively Complete Verification of Higher-Order Functional Programs. POPL 2013.
-
Hiroshi Unno and Naoki Kobayashi. Dependent Type Inference with Interpolants. PPDP 2009.
-
Hiroshi Unno and Naoki Kobayashi. On-Demand Refinement of Dependent Types. FLOPS 2008.
- Taro Sekiyama and Hiroshi Unno. Higher-Order Model Checking of Effect-Handling Programs with Answer-Type Modification. OOPSLA 2024.
-
Hiroshi Unno, Tachio Terauchi, Yu Gu, and Eric Koskinen. Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification. POPL 2023.
-
Yu Gu, Takeshi Tsukada, and Hiroshi Unno. Optimal CHC Solving via Termination Proofs. POPL 2023.
-
Hiroshi Unno, Tachio Terauchi, and Eric Koskinen. Constraint-based Relational Verification. CAV 2021.
-
Satoshi Kura, Hiroshi Unno, and Ichiro Hasuo. Decision Tree Learning in CEGIS-Based Termination Analysis. CAV 2021.
-
Yuki Satake, Hiroshi Unno, and Hinata Yanagi. Probabilistic Inference for Predicate Constraint Satisfaction. AAAI 2020.
-
Takeshi Tsukada and Hiroshi Unno. Inductive Approach to Spacer. PLDI 2024.
-
Takeshi Tsukada and Hiroshi Unno. Software Model-Checking as Cyclic-Proof Search. POPL 2022.
-
Hiroshi Unno, Sho Torii, and Hiroki Sakamoto. Automating Induction for Solving Horn Clauses. CAV 2017.
- Hiroshi Unno, Takeshi Tsukada, and Jie-Hong Roland Jiang. Solving Higher-Order Quantified Boolean Satisfiability via Higher-Order Model Checking. AAAI 2025.
We thank Hiroyuki Katsura, Philippe Heim, and Ehsan Goharshady for reporting bugs in PCSat and MuVal. We are also grateful to the organizer of termCOMP 2023, Akihisa Yamada, and participants Florian Frohn and Nils Lommen, as thanks to them, we were able to identify a bug in MuVal.