AI-powered market intelligence for everyone — turn raw market data into clear, explainable trading insights
fintools-ai is an ecosystem of microservices and AI agents that transforms raw market data into actionable, explainable insights.
The mission is simple: Make complex market data easy to understand and act on.
Product | What It Does | Status |
---|---|---|
🏆 Trade Copilot | Conversational AI that explains real-time order flow and technicals for any ticker in seconds | Private Beta 🔒 |
📊 OI Analysis Copilot | Pinpoints where institutions are concentrating options exposure | Coming Soon |
🌊 Technical Data Servers | High-speed bid/ask momentum, sweep detection, absorption patterns & more | Private Beta 🔒 |
Trade Copilot is one of the first product of the fintools-ai suite. It's just the beginning. I'm building a collection of specialized AI assistants, each designed to simplify different aspects of trading.
Trade Copilot tackles the trader's biggest pain point: turning a firehose of real-time data into an actionable story.
flowchart LR
classDef header fill:#F0F4FF,stroke:#4C6EF5,color:#1E40AF,stroke-width:2px
classDef stage fill:#FFFFFF,stroke:#90A4AE,color:#37474F,stroke-width:1px
classDef service fill:#F5F5F5,stroke:#B0BEC5,color:#263238,stroke-width:1px
subgraph TC["🤖 Trade Copilot"]
direction LR
Query["User Query"]:::header
NLP["Natural Language<br/>Interface"]:::stage
RTP["Real-Time<br/>Processing"]:::stage
AI["Claude 4 +<br/>AWS Bedrock"]:::stage
Analysis["Multi-Modal<br/>Analysis"]:::stage
Query --> NLP --> RTP --> AI --> Analysis
end
subgraph Services["Connected Services"]
direction LR
Market["Market Data<br/>Server"]:::service
Order["Order Flow<br/>Server"]:::service
Options["Options Flow<br/>Server"]:::service
end
RTP -.-> Market
RTP -.-> Order
RTP -.-> Options
What Trade Copilot Does:
- Natural Language Interface — Ask questions in plain English about market data
- Real-Time Processing — Analyzes current market activity as it happens
- Clear Explanations — Breaks down complex data into understandable insights
- Comprehensive View — Combines multiple data sources for complete analysis
- OI Analysis Copilot — Deep dive into open interest patterns and create trade plans based on options positioning
Each tool focuses on making one aspect of trading simpler and more data-driven.
╔═══════════════════════════════════════════════════════════════════════════╗
║ fintools-ai Architecture ║
╚═══════════════════════════════════════════════════════════════════════════╝
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────────┐
│ 🌐 Data Layer │ │ 🔧 Processing │ │ 📱 User Interface │
├─────────────────┤ ├──────────────────┤ ├─────────────────────┤
│ │ │ │ │ │
│ • 3P Market │─────▶│ Go Data Broker │─────▶│ • Trade Copilot │
│ Data APIs │ │ (Real-time) │ │ • Web Dashboard │
│ • WebSocket │ │ │ │ • Mobile Apps │
│ Feeds │ │ • gRPC Server │ │ (Coming Soon) │
│ • REST APIs │ │ • Redis Cache │ │ │
│ │ │ • Event Stream │ │ │
└─────────────────┘ └────────┬─────────┘ └─────────────────────┘
│
┌────────▼─────────┐
│ 📡 MCP Servers │
├──────────────────┤
│ │
│ • Market Data │
│ • Order Flow │
│ • Options Flow │
│ • Open Interest │
│ │
└────────┬─────────┘
│
┌────────▼─────────┐
│ 🧠 AI Layer │
├──────────────────┤
│ │
│ • Claude 4 │
│ • AWS Bedrock │
│ • Pattern Recog. │
│ • ML Models │
│ │
└──────────────────┘
📋 Beta Notice: Several repositories are currently private during beta testing and will be made public upon stable release.
The AI trading assistant that analyzes markets and help generated insights from raw real time market data
- Status: Private Beta — Repository will be public soon
- Tech Stack: Python, FastMCP, Claude 4, Go, gRPC, WebSockets
- Key Features:
- Real-time order flow analysis
- Options sweep detection
- Volume profile analysis
- Institutional bias tracking
- Natural language queries
Comprehensive financial market data analysis for LLM agents
# Example: Get volume profile in natural language
result = await mcp_client.call_tool("financial_volume_profile_tool", {
"symbol": "AAPL",
"timeframe": "5m"
})
# Returns: POC, VAH, VAL, and high-volume nodes with explanations
- Tools: Volume Profile, Technical Analysis, Support/Resistance Zones
- Integration: FastMCP protocol, 3P market data APIs
- Use Cases: Pattern recognition, price level identification
Standalone server for AI trading agents
- Purpose: Bridge between external brokers and AI systems
- Architecture: Modular, scalable data processing
- Output: Structured insights for LLM consumption
Chat-based Open Interest analysis
- Focus: Daily OI trends and positioning analysis
- Interface: Natural language queries for options data
- Insights: Support/resistance from options positioning
Real-time order flow analysis and institutional tracking
Key Features:
- 🔄 Bid/Ask Momentum Analysis — Track buying vs selling pressure
- 📊 Large Order Detection — Identify institutional-sized trades
- 🎯 Absorption Pattern Recognition — Spot accumulation/distribution
- 🏢 Market Maker vs Retail Classification — Know who's trading
Options market intelligence and sweep detection
Key Features:
- 🎯 Institutional Sweep Detection — Catch large options orders
- 📈 Put/Call Bias Analysis — Market sentiment indicators
- ⚡ Gamma Positioning Insights — Understand dealer hedging
- 💰 Smart Money Flow Tracking — Follow institutional positioning
Dedicated Open Interest data pipeline
- Purpose: Fetch and process OI data for analysis
- Integration: Feeds into OI Analysis Copilot
- Updates: Real-time OI change detection
- Conversational Interface — Ask questions in plain English
- Explainable AI — Understand why, not just what
- Continuous Learning — Patterns improve with market data
- Multi-Modal Analysis — Text, charts, and data combined
- Use only the services you need
- Easy integration with existing tools
Currently in Beta Development 🚧
I'm actively building the future of AI-powered trading analysis. Core systems are in development and being tested with early adopters.
Connect:
Important Notice:
- 📋 Not Financial Advice — Tools provide data analysis, not investment recommendations
- 🔒 Risk Disclaimer — Trading involves substantial risk of loss
- 📊 Data Accuracy — While we strive for accuracy, verify all data independently