+
Skip to content
/ GHRS Public
forked from hadoov/GHRS

GHRS: Graph-based hybrid recommendation system with application to movie recommendation

Notifications You must be signed in to change notification settings

coolchang/GHRS

 
 

Repository files navigation

Movie Recommendation System

A web-based movie recommendation system that uses collaborative filtering and graph-based features to provide personalized movie recommendations.

Features

  • User profile visualization
  • Favorite movies display
  • Personalized movie recommendations
  • Interactive web interface
  • Graph-based feature extraction
  • Collaborative filtering

Technologies Used

  • Python
  • Flask
  • Pandas
  • NumPy
  • Scikit-learn
  • NetworkX
  • Bootstrap
  • Font Awesome

Setup Instructions

  1. Clone the repository:
git clone https://github.com/yourusername/movie-recommendation-system.git
cd movie-recommendation-system
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install required packages:
pip install -r requirements.txt
  1. Run the feature extraction script:
python Features100K.py
  1. Start the web application:
python app.py
  1. Open your browser and navigate to:
http://localhost:5000

Project Structure

movie-recommendation-system/
├── app.py                 # Flask web application
├── Features100K.py        # Feature extraction script
├── requirements.txt       # Python dependencies
├── templates/            # HTML templates
│   └── index.html        # Main web interface
├── datasets/            # MovieLens dataset
│   └── ml-100k/
└── data100k/            # Generated features

Usage

  1. Enter a user ID (1-943) in the web interface
  2. View the user's profile information
  3. See the user's favorite movies
  4. Get personalized movie recommendations

Dataset

This project uses the MovieLens 100K dataset, which includes:

  • 943 users
  • 1,682 movies
  • 100,000 ratings

License

MIT License

Contributing

  1. Fork the repository
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a new Pull Request

About

GHRS: Graph-based hybrid recommendation system with application to movie recommendation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 99.2%
  • Other 0.8%
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载