A web-based movie recommendation system that uses collaborative filtering and graph-based features to provide personalized movie recommendations.
- User profile visualization
- Favorite movies display
- Personalized movie recommendations
- Interactive web interface
- Graph-based feature extraction
- Collaborative filtering
- Python
- Flask
- Pandas
- NumPy
- Scikit-learn
- NetworkX
- Bootstrap
- Font Awesome
- Clone the repository:
git clone https://github.com/yourusername/movie-recommendation-system.git
cd movie-recommendation-system
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install required packages:
pip install -r requirements.txt
- Run the feature extraction script:
python Features100K.py
- Start the web application:
python app.py
- Open your browser and navigate to:
http://localhost:5000
movie-recommendation-system/
├── app.py # Flask web application
├── Features100K.py # Feature extraction script
├── requirements.txt # Python dependencies
├── templates/ # HTML templates
│ └── index.html # Main web interface
├── datasets/ # MovieLens dataset
│ └── ml-100k/
└── data100k/ # Generated features
- Enter a user ID (1-943) in the web interface
- View the user's profile information
- See the user's favorite movies
- Get personalized movie recommendations
This project uses the MovieLens 100K dataset, which includes:
- 943 users
- 1,682 movies
- 100,000 ratings
MIT License
- Fork the repository
- Create your feature branch
- Commit your changes
- Push to the branch
- Create a new Pull Request