Open
Description
Description of your problem or feature request
It is my understanding that current exact posteriors, e.g. gamma_poisson_conjugateo
, can only condition on a single observation
Can we allow arguments such as realized
(akin to joint_logprob
in AePPL) or realized_rvs_to_values
in the AeMCMC's nuts' construct_sampler
in AeMCMC's general construct_sampler
?
srng = at.random.RandomStream(0)
lam_rv = srng.gamma(1., 1., name="lam")
Y_rv = srng.poisson(lam=lam_rv, size=3, name="Y") # something like this?
y_vv = Y_rv.clone()
sampler, initial_values = aemcmc.construct_sampler({Y_rv: y_vv}, srng)
p_posterior_step = sampler.sample_steps[lam_rv]
sample_fn = aesara.function([y_vv], p_posterior_step)
Currently, sample_fn(np.array([2, 3, 4])
yields a 3-dimensional array.