Package website: release | dev
This package provides hyperparameter tuning for
mlr3. It offers various tuning methods
e.g. grid search, random search and generalized simulated annealing and
iterated racing and different termination criteria can be set and
combined. AutoTuner
provides a convenient way to perform nested
resampling in combination with mlr3
. The package is build on
bbotk which provides a common
framework for optimization.
- mlr3tuningspaces offers a collection of search spaces for hyperparameter tuning.
- mlr3hyperband adds the hyperband and successive halving algorithm.
- mlr3book chapters on tuning search spaces, hyperparameter tuning and nested resampling.
- mlr3gallery posts
- cheatsheet
Install the last release from CRAN:
install.packages("mlr3tuning")
Install the development version from GitHub:
remotes::install_github("mlr-org/mlr3tuning")
library("mlr3tuning")
# retrieve task
task = tsk("pima")
# load learner and set search space
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE))
# hyperparameter tuning on the pima indians diabetes data set
instance = tune(
method = "random_search",
task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measure = msr("classif.ce"),
term_evals = 10,
batch_size = 5
)
# best performing hyperparameter configuration
instance$result
## cp learner_param_vals x_domain classif.ce
## 1: -2.774656 <list[2]> <list[1]> 0.2617188
# all evaluated hyperparameter configuration
as.data.table(instance$archive)
## cp classif.ce x_domain_cp runtime_learners timestamp batch_nr resample_result
## 1: -6.355096 0.2786458 0.0017378683 0.032 2021-10-27 14:24:43 1 <ResampleResult[22]>
## 2: -5.937751 0.2799479 0.0026379549 0.035 2021-10-27 14:24:43 1 <ResampleResult[22]>
## 3: -4.280177 0.2734375 0.0138402055 0.060 2021-10-27 14:24:43 1 <ResampleResult[22]>
## 4: -7.539553 0.2786458 0.0005316351 0.107 2021-10-27 14:24:43 1 <ResampleResult[22]>
## 5: -7.140496 0.2786458 0.0007923588 0.037 2021-10-27 14:24:43 1 <ResampleResult[22]>
## 6: -9.114735 0.2786458 0.0001100325 0.030 2021-10-27 14:24:44 2 <ResampleResult[22]>
## 7: -5.401998 0.2695312 0.0045075636 0.034 2021-10-27 14:24:44 2 <ResampleResult[22]>
## 8: -4.703298 0.2773438 0.0090653290 0.032 2021-10-27 14:24:44 2 <ResampleResult[22]>
## 9: -2.774656 0.2617188 0.0623709163 0.031 2021-10-27 14:24:44 2 <ResampleResult[22]>
## 10: -4.441283 0.2734375 0.0117808090 0.030 2021-10-27 14:24:44 2 <ResampleResult[22]>
# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(task)
# retrieve task
task = tsk("pima")
# construct auto tuner
at = auto_tuner(
method = "random_search",
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE)),
resampling = rsmp("cv", folds = 3),
measure = msr("classif.ce"),
term_evals = 10,
batch_size = 5
)
# train/test split
train_set = sample(task$nrow, 0.8 * task$nrow)
test_set = setdiff(seq_len(task$nrow), train_set)
# tune hyperparameters and fit final model on the complete data set in one go
at$train(task, row_ids = train_set)
# best performing hyperparameter configuration
at$tuning_result
## cp learner_param_vals x_domain classif.ce
## 1: -4.159136 <list[2]> <list[1]> 0.2590228
# all evaluated hyperparameter configuration
as.data.table(at$archive)
## cp classif.ce x_domain_cp runtime_learners timestamp batch_nr resample_result
## 1: -6.469604 0.2671051 0.0015498397 0.037 2021-10-27 14:24:44 1 <ResampleResult[22]>
## 2: -5.975552 0.2671051 0.0025400997 0.034 2021-10-27 14:24:44 1 <ResampleResult[22]>
## 3: -6.304555 0.2671051 0.0018279594 0.032 2021-10-27 14:24:44 1 <ResampleResult[22]>
## 4: -2.885359 0.2703730 0.0558347447 0.033 2021-10-27 14:24:44 1 <ResampleResult[22]>
## 5: -5.878631 0.2671051 0.0027986148 0.031 2021-10-27 14:24:44 1 <ResampleResult[22]>
## 6: -5.316384 0.2671051 0.0049104786 0.030 2021-10-27 14:24:45 2 <ResampleResult[22]>
## 7: -4.159136 0.2590228 0.0156210471 0.030 2021-10-27 14:24:45 2 <ResampleResult[22]>
## 8: -9.206399 0.2671051 0.0001003949 0.033 2021-10-27 14:24:45 2 <ResampleResult[22]>
## 9: -4.869814 0.2785350 0.0076747945 0.032 2021-10-27 14:24:45 2 <ResampleResult[22]>
## 10: -6.649454 0.2671051 0.0012947286 0.030 2021-10-27 14:24:45 2 <ResampleResult[22]>
# predict new data with model trained on the complete data set and optimized hyperparameters
at$predict(task, row_ids = test_set)
## <PredictionClassif> for 154 observations:
## row_ids truth response
## 3 pos pos
## 6 neg neg
## 11 neg neg
## ---
## 756 pos pos
## 758 pos pos
## 768 neg neg
# retrieve task
task = tsk("pima")
# load learner and set search space
learner = lrn("classif.rpart", cp = to_tune(1e-04, 1e-1, logscale = TRUE))
# nested resampling
rr = tune_nested(
method = "random_search",
task = task,
learner = learner,
inner_resampling = rsmp("holdout"),
outer_resampling = rsmp("cv", folds = 3),
measure = msr("classif.ce"),
term_evals = 10,
batch_size = 5
)
# aggregated performance of all outer resampling iterations
rr$aggregate()
## classif.ce
## 0.2473958
# performance scores of the outer resampling
rr$score()
## task task_id learner learner_id resampling resampling_id iteration prediction classif.ce
## 1: <TaskClassif[49]> pima <AutoTuner[41]> classif.rpart.tuned <ResamplingCV[19]> cv 1 <PredictionClassif[20]> 0.2187500
## 2: <TaskClassif[49]> pima <AutoTuner[41]> classif.rpart.tuned <ResamplingCV[19]> cv 2 <PredictionClassif[20]> 0.2500000
## 3: <TaskClassif[49]> pima <AutoTuner[41]> classif.rpart.tuned <ResamplingCV[19]> cv 3 <PredictionClassif[20]> 0.2734375
# inner resampling results
extract_inner_tuning_results(rr)
## iteration cp classif.ce learner_param_vals x_domain task_id learner_id resampling_id
## 1: 1 -2.768620 0.2573099 <list[2]> <list[1]> pima classif.rpart.tuned cv
## 2: 2 -3.880799 0.2046784 <list[2]> <list[1]> pima classif.rpart.tuned cv
## 3: 3 -8.862942 0.2748538 <list[2]> <list[1]> pima classif.rpart.tuned cv
# inner resampling archives
extract_inner_tuning_archives(rr)
## iteration cp classif.ce x_domain_cp runtime_learners timestamp batch_nr resample_result task_id learner_id resampling_id
## 1: 1 -4.539772 0.2748538 0.0106758449 0.011 2021-10-27 14:24:45 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 2: 1 -7.559936 0.2631579 0.0005209086 0.009 2021-10-27 14:24:45 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 3: 1 -8.648543 0.2631579 0.0001753822 0.010 2021-10-27 14:24:45 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 4: 1 -6.297959 0.2631579 0.0018400560 0.010 2021-10-27 14:24:45 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 5: 1 -8.947182 0.2631579 0.0001301033 0.010 2021-10-27 14:24:45 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 6: 1 -8.067483 0.2631579 0.0003135715 0.011 2021-10-27 14:24:45 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 7: 1 -8.350241 0.2631579 0.0002363396 0.010 2021-10-27 14:24:45 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 8: 1 -5.913481 0.2631579 0.0027027622 0.015 2021-10-27 14:24:45 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 9: 1 -8.752513 0.2631579 0.0001580636 0.012 2021-10-27 14:24:45 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 10: 1 -2.768620 0.2573099 0.0627485302 0.009 2021-10-27 14:24:45 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 11: 2 -3.286175 0.2105263 0.0373966171 0.010 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 12: 2 -4.124071 0.2456140 0.0161785202 0.009 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 13: 2 -2.385855 0.2105263 0.0920102553 0.010 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 14: 2 -3.880799 0.2046784 0.0206343371 0.016 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 15: 2 -4.328644 0.2456140 0.0131854101 0.009 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 16: 2 -4.394274 0.2456140 0.0123478454 0.010 2021-10-27 14:24:46 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 17: 2 -5.922306 0.2690058 0.0026790151 0.009 2021-10-27 14:24:46 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 18: 2 -7.331236 0.2690058 0.0006547636 0.010 2021-10-27 14:24:46 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 19: 2 -4.992721 0.2690058 0.0067871745 0.009 2021-10-27 14:24:46 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 20: 2 -3.362562 0.2105263 0.0346463879 0.009 2021-10-27 14:24:46 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 21: 3 -8.862942 0.2748538 0.0001415380 0.011 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 22: 3 -7.347079 0.2748538 0.0006444723 0.010 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 23: 3 -7.067612 0.2748538 0.0008522663 0.014 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 24: 3 -8.044845 0.2748538 0.0003207512 0.010 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 25: 3 -6.697964 0.2748538 0.0012334207 0.009 2021-10-27 14:24:46 1 <ResampleResult[22]> pima classif.rpart.tuned cv
## 26: 3 -6.530743 0.2748538 0.0014579225 0.010 2021-10-27 14:24:47 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 27: 3 -4.267553 0.2982456 0.0140160370 0.010 2021-10-27 14:24:47 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 28: 3 -6.352161 0.2748538 0.0017429764 0.010 2021-10-27 14:24:47 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 29: 3 -6.222573 0.2748538 0.0019841342 0.010 2021-10-27 14:24:47 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## 30: 3 -3.570023 0.2865497 0.0281551963 0.009 2021-10-27 14:24:47 2 <ResampleResult[22]> pima classif.rpart.tuned cv
## iteration cp classif.ce x_domain_cp runtime_learners timestamp batch_nr resample_result task_id learner_id resampling_id
library("mlr3tuning")
library("mlr3learners")
# retrieve task
task = tsk("pima")
# load learner and set search space
learner = lrn("classif.xgboost",
eta = to_tune(),
nrounds = to_tune(500, 2500),
eval_metric = "logloss"
)
# hyperparameter tuning on the pima indians diabetes data set
instance = tune(
method = "grid_search",
task = task,
learner = learner,
resampling = rsmp("cv", folds = 3),
measure = msr("classif.ce"),
allow_hotstart = TRUE,
resolution = 5,
batch_size = 5
)
# best performing hyperparameter configuration
instance$result
## nrounds eta learner_param_vals x_domain classif.ce
## 1: 1500 0.5 <list[5]> <list[2]> 0.1302083
# all evaluated hyperparameter configuration
as.data.table(instance$archive)
## nrounds eta classif.ce x_domain_nrounds x_domain_eta runtime_learners timestamp batch_nr resample_result
## 1: 500 0.00 0.4843750 500 0.00 1.426 2021-10-27 14:24:54 1 <ResampleResult[22]>
## 2: 500 0.25 0.2682292 500 0.25 0.890 2021-10-27 14:24:54 1 <ResampleResult[22]>
## 3: 500 0.50 0.2695312 500 0.50 0.750 2021-10-27 14:24:54 1 <ResampleResult[22]>
## 4: 500 0.75 0.2734375 500 0.75 0.715 2021-10-27 14:24:54 1 <ResampleResult[22]>
## 5: 500 1.00 0.2799479 500 1.00 0.697 2021-10-27 14:24:54 1 <ResampleResult[22]>
## 6: 1000 0.00 0.5091146 1000 0.00 1.829 2021-10-27 14:25:00 2 <ResampleResult[22]>
## 7: 1000 0.25 0.1315104 1000 0.25 0.813 2021-10-27 14:25:00 2 <ResampleResult[22]>
## 8: 1000 0.50 0.1471354 1000 0.50 0.702 2021-10-27 14:25:00 2 <ResampleResult[22]>
## 9: 1000 0.75 0.1510417 1000 0.75 0.637 2021-10-27 14:25:00 2 <ResampleResult[22]>
## 10: 1000 1.00 0.1588542 1000 1.00 0.620 2021-10-27 14:25:00 2 <ResampleResult[22]>
## 11: 1500 0.00 0.5130208 1500 0.00 1.999 2021-10-27 14:25:07 3 <ResampleResult[22]>
## 12: 1500 0.25 0.1393229 1500 0.25 0.897 2021-10-27 14:25:07 3 <ResampleResult[22]>
## 13: 1500 0.50 0.1302083 1500 0.50 0.764 2021-10-27 14:25:07 3 <ResampleResult[22]>
## 14: 1500 0.75 0.1497396 1500 0.75 0.701 2021-10-27 14:25:07 3 <ResampleResult[22]>
## 15: 1500 1.00 0.1679688 1500 1.00 0.646 2021-10-27 14:25:07 3 <ResampleResult[22]>
## 16: 2000 0.00 0.4908854 2000 0.00 2.260 2021-10-27 14:25:14 4 <ResampleResult[22]>
## 17: 2000 0.25 0.1302083 2000 0.25 0.981 2021-10-27 14:25:14 4 <ResampleResult[22]>
## 18: 2000 0.50 0.1380208 2000 0.50 0.859 2021-10-27 14:25:14 4 <ResampleResult[22]>
## 19: 2000 0.75 0.1549479 2000 0.75 0.771 2021-10-27 14:25:14 4 <ResampleResult[22]>
## 20: 2000 1.00 0.1679688 2000 1.00 0.727 2021-10-27 14:25:14 4 <ResampleResult[22]>
## 21: 2500 0.00 0.4947917 2500 0.00 2.648 2021-10-27 14:25:22 5 <ResampleResult[22]>
## 22: 2500 0.25 0.1341146 2500 0.25 1.052 2021-10-27 14:25:22 5 <ResampleResult[22]>
## 23: 2500 0.50 0.1393229 2500 0.50 0.910 2021-10-27 14:25:22 5 <ResampleResult[22]>
## 24: 2500 0.75 0.1536458 2500 0.75 0.870 2021-10-27 14:25:22 5 <ResampleResult[22]>
## 25: 2500 1.00 0.1549479 2500 1.00 0.805 2021-10-27 14:25:22 5 <ResampleResult[22]>
## nrounds eta classif.ce x_domain_nrounds x_domain_eta runtime_learners timestamp batch_nr resample_result
# fit final model on complete data set
learner$param_set$values = instance$result_learner_param_vals
learner$train(task)