Welcome to SiMa.ai's ML Model webpage!
A large set of models are supported1 on the SiMa.ai platform as part of Palette.
This Model List:
- Covers multiple frameworks such as PyTorch and ONNX.
- Draws from various repositories including Torchvision, ONNX Model Zoo, and Open Model Zoo for OpenVINO.
For all supported models, links/instructions are provided for the pre-trained FP32 models along with compilation scripts and PyTorch to ONNX conversion script.
To run the models on this repository using the Palette ModelSDK, make sure you have successfully installed Palette from the SiMa.ai Developer Portal.
Model | Framework | Input Shape | Pretrained Model | Compilation script |
---|---|---|---|---|
alexnet | PyTorch | 1, 3, 224, 224 | Torchvision Link | alexnet.py |
bvlcalexnet-7 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | bvlcalexnet-7_fp32_224_224.py |
caffenet-9 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | caffenet-9_fp32_224_224.py |
colorization-siggraph | PyTorch | 1, 1, 256, 256 | OpenVINO Link | colorization-siggraph.py |
colorization-v2 | PyTorch | 1, 1, 256, 256 | OpenVINO Link | colorization-v2.py |
convnext_base | PyTorch | 1, 3, 224, 224 | Torchvision Link | convnext_base.py |
convnext_large | PyTorch | 1, 3, 224, 224 | Torchvision Link | convnext_large.py |
convnext_small | PyTorch | 1, 3, 224, 224 | Torchvision Link | convnext_small.py |
convnext_tiny | PyTorch | 1, 3, 224, 224 | Torchvision Link | convnext_tiny.py |
convnext-tiny | PyTorch | 1, 3, 224, 224 | OpenVINO Link | convnext-tiny.py |
ctdet_coco_dlav0_512 | PyTorch | 1, 3, 512, 512 | OpenVINO Link | ctdet_coco_dlav0_512.py |
deeplabv3_mobilenet_v3_large | PyTorch | 1, 3, 224, 224 | Torchvision Link | deeplabv3_mobilenet_v3_large.py |
deeplabv3_resnet50 | PyTorch | 1, 3, 224, 224 | Torchvision Link | deeplabv3_resnet50.py |
deeplabv3_resnet101 | PyTorch | 1, 3, 224, 224 | Torchvision Link | deeplabv3_resnet101.py |
densenet-12 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | densenet-12_fp32_224_224.py |
densenet-9 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | densenet-9_fp32_224_224.py |
densenet121 | PyTorch | 1, 3, 224, 224 | Torchvision Link | densenet121.py |
densenet161 | PyTorch | 1, 3, 224, 224 | Torchvision Link | densenet161.py |
densenet169 | PyTorch | 1, 3, 224, 224 | Torchvision Link | densenet169.py |
densenet201 | PyTorch | 1, 3, 224, 224 | Torchvision Link | densenet201.py |
dla-34 | PyTorch | 1, 3, 224, 224 | OpenVINO Link | dla-34.py |
drn-d-38 | PyTorch | 1, 3, 1024, 2048 | OpenVINO Link | drn-d-38.py |
efficientnet_b0 | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_b0.py |
efficientnet_b1 | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_b1.py |
efficientnet_b2 | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_b2.py |
efficientnet_b3 | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_b3.py |
efficientnet_b4 | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_b4.py |
efficientnet_b5 | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_b5.py |
efficientnet_b6 | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_b6.py |
efficientnet_b7 | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_b7.py |
efficientnet_v2_m | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_v2_m.py |
efficientnet_v2_s | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_v2_s.py |
efficientnet_v2_l | PyTorch | 1, 3, 224, 224 | Torchvision Link | efficientnet_v2_l.py |
efficientnet-b0 | TensorFlow | 1, 224, 224, 3 | OpenVINO Link | efficientnet-b0.py |
efficientnet-b0-pytorch | PyTorch | 1, 3, 224, 224 | OpenVINO Link | efficientnet-b0-pytorch.py |
efficientnet-lite4-11 | ONNX | 1, 224, 224, 3 | ONNX Zoo Link | efficientnet-lite4-11_fp32_224_224.py |
efficientnet-v2-b0 | PyTorch | 1, 3, 224, 224 | OpenVINO Link | efficientnet-v2-b0.py |
efficientnet-v2-s | PyTorch | 1, 224, 224, 3 | OpenVINO Link | efficientnet-v2-s.py |
erfnet | PyTorch | 1, 3, 208, 976 | OpenVINO Link | erfnet.py |
fcn_resnet50 | PyTorch | 1, 3, 224, 224 | Torchvision Link | fcn_resnet50.py |
fcn_resnet101 | PyTorch | 1, 3, 224, 224 | Torchvision Link | fcn_resnet101.py |
googlenet | PyTorch | 1, 3, 224, 224 | Torchvision Link | googlenet.py |
googlenet-9 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | googlenet-9_fp32_224_224.py |
googlenet-v3-pytorch | PyTorch | 1, 3, 299, 299 | OpenVINO Link | googlenet-v3-pytorch.py |
hbonet-0.25 | PyTorch | 1, 3, 224, 224 | OpenVINO Link | hbonet-0_25.py |
hbonet-1.0 | PyTorch | 1, 3, 224, 224 | OpenVINO Link | hbonet-1_0.py |
higher-hrnet-w32-human-pose-estimation | PyTorch | 1, 3, 512, 512 | OpenVINO Link | higher-hrnet-w32-human-pose-estimation.py |
human-pose-estimation-3d-0001 | PyTorch | 1, 3, 256, 448 | OpenVINO Link | human-pose-estimation-3d-0001.py |
inception_v3 | PyTorch | 1, 3, 224, 224 | Torchvision Link | inception_v3.py |
lraspp_mobilenet_v3_large | PyTorch | 1, 3, 224, 224 | Torchvision Link | lraspp_mobilenet_v3_large.py |
mnasnet0_5 | PyTorch | 1, 3, 224, 224 | Torchvision Link | mnasnet0_5.py |
mnasnet0_75 | PyTorch | 1, 3, 224, 224 | Torchvision Link | mnasnet0_75.py |
mnasnet1_0 | PyTorch | 1, 3, 224, 224 | Torchvision Link | mnasnet1_0.py |
mnasnet1_3 | PyTorch | 1, 3, 224, 224 | Torchvision Link | mnasnet1_3.py |
mobilenet_v2 | PyTorch | 1, 3, 224, 224 | Torchvision Link | mobilenet_v2.py |
mobilenet-v1-0.25-128 | TensorFlow | 1, 128, 128, 3 | OpenVINO Link | mobilenet-v1-0_25-128.py |
mobilenet-v1-1.0-224-tf | TensorFlow | 1, 224, 224, 3 | OpenVINO Link | mobilenet-v1-1_0-224-tf.py |
mobilenet-v2-1.0-224 | TensorFlow | 1, 224, 224, 3 | OpenVINO Link | mobilenet-v2-1_0-224.py |
mobilenet-v2-1.4-224 | TensorFlow | 1, 224, 224, 3 | OpenVINO Link | mobilenet-v2-1_4-224.py |
mobilenet-v2-7 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | mobilenet-v2-7_fp32_224_224.py |
mobilenet-v2-pytorch | PyTorch | 1, 3, 224, 224 | OpenVINO Link | mobilenet-v2-pytorch.py |
mobilenet_v3_large | PyTorch | 1, 3, 224, 224 | Torchvision Link | mobilenet_v3_large.py |
mobilenet_v3_small | PyTorch | 1, 3, 224, 224 | Torchvision Link | mobilenet_v3_small.py |
mobilenet-yolo-v4-syg | Keras | 1, 416, 416, 3 | OpenVINO Link | mobilenet-yolo-v4-syg.py |
mobilenetv2-12 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | mobilenetv2-12_fp32_224_224.py |
nfnet-f0 | PyTorch | 1, 3, 256, 256 | OpenVINO Link | nfnet-f0.py |
open-closed-eye-0001 | PyTorch | 1, 3, 32, 32 | OpenVINO Link | open-closed-eye-0001.py |
quantized_googlenet | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_googlenet.py |
quantized_inception_v3 | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_inception_v3.py |
quantized_mobilenet_v2 | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_mobilenet_v2.py |
quantized_mobilenet_v3_large | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_mobilenet_v3_large.py |
quantized_resnet18 | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_resnet18.py |
quantized_resnet50 | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_resnet50.py |
quantized_resnext101_32x8d | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_resnext101_32x8d.py |
quantized_resnext101_64x4d | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_resnext101_64x4d.py |
quantized_shufflenet_v2_x0_5 | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_shufflenet_v2_x0_5.py |
quantized_shufflenet_v2_x1_0 | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_shufflenet_v2_x1_0.py |
quantized_shufflenet_v2_x1_5 | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_shufflenet_v2_x1_5.py |
quantized_shufflenet_v2_x2_0 | PyTorch | 1, 3, 224, 224 | Torchvision Link | quantized_shufflenet_v2_x2_0.py |
rcnn-ilsvrc13-9 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | rcnn-ilsvrc13-9_fp32_224_224.py |
regnet_x_1_6gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_x_1_6gf.py |
regnet_x_8gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_x_8gf.py |
regnet_x_16gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_x_16gf.py |
regnet_x_32gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_x_32gf.py |
regnet_x_3_2gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_x_3_2gf.py |
regnet_x_400mf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_x_400mf.py |
regnet_x_800mf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_x_800mf.py |
regnet_y_1_6gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_y_1_6gf.py |
regnet_y_8gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_y_8gf.py |
regnet_y_16gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_y_16gf.py |
regnet_y_128gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_y_16gf.py |
regnet_y_32gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_y_32gf.py |
regnet_y_3_2gf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_y_3_2gf.py |
regnet_y_400mf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_y_400mf.py |
regnet_y_800mf | PyTorch | 1, 3, 224, 224 | Torchvision Link | regnet_y_800mf.py |
regnetx-3.2gf | PyTorch | 1, 3, 224, 224 | OpenVINO Link | regnetx-3_2gf.py |
repvgg-a0 | PyTorch | 1, 3, 224, 224 | OpenVINO Link | repvgg-a0.py |
repvgg-b1 | PyTorch | 1, 3, 224, 224 | OpenVINO Link | repvgg-b1.py |
repvgg-b3 | PyTorch | 1, 3, 224, 224 | OpenVINO Link | repvgg-b3.py |
resnet-18-pytorch | PyTorch | 1, 3, 224, 224 | OpenVINO Link | resnet-18-pytorch.py |
resnet-34-pytorch | PyTorch | 1, 3, 224, 224 | OpenVINO Link | resnet-34-pytorch.py |
resnet-50-pytorch | PyTorch | 1, 3, 224, 224 | OpenVINO Link | resnet-50-pytorch.py |
resnet-50-tf | TensorFlow | 1, 224, 224, 3 | OpenVINO Link | resnet-50-tf.py |
resnet101 | PyTorch | 1, 3, 224, 224 | Torchvision Link | resnet101.py |
resnet101-v1-7 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | resnet101-v1-7_fp32_224_224.py |
resnet152 | PyTorch | 1, 3, 224, 224 | Torchvision Link | resnet152.py |
resnet152-v1-7 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | resnet152-v1-7_fp32_224_224.py |
resnet18 | PyTorch | 1, 3, 224, 224 | Torchvision Link | resnet18.py |
resnet34 | PyTorch | 1, 3, 224, 224 | Torchvision Link | resnet34.py |
resnet50 | PyTorch | 1, 3, 224, 224 | Torchvision Link | resnet50.py |
resnet50-v1-12 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | resnet50-v1-12_fp32_224_224.py |
resnet50-v1-7 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | resnet50-v1-7_fp32_224_224.py |
resnet50-v2-7 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | resnet50-v2-7_fp32_224_224.py |
resnext101_32x8d | PyTorch | 1, 3, 224, 224 | Torchvision Link | resnext101_32x8d.py |
resnext101_64x4d | PyTorch | 1, 3, 224, 224 | Torchvision Link | resnext101_64x4d.py |
resnext50_32x4d | PyTorch | 1, 3, 224, 224 | Torchvision Link | resnext50_32x4d.py |
shufflenet_v2_x0_5 | PyTorch | 1, 3, 224, 224 | Torchvision Link | shufflenet_v2_x0_5.py |
shufflenet_v2_x1_0 | PyTorch | 1, 3, 224, 224 | Torchvision Link | shufflenet_v2_x1_0.py |
shufflenet_v2_x1_5 | PyTorch | 1, 3, 224, 224 | Torchvision Link | shufflenet_v2_x1_5.py |
shufflenet_v2_x2_0 | PyTorch | 1, 3, 224, 224 | Torchvision Link | shufflenet_v2_x2_0.py |
shufflenet-v2-x1.0 | PyTorch | 1, 3, 224, 224 | OpenVINO Link | shufflenet-v2-x1_0.py |
single-human-pose-estimation-0001 | PyTorch | 1, 3, 384, 288 | OpenVINO Link | single-human-pose-estimation-0001.py |
squeezenet1_0 | PyTorch | 1, 3, 224, 224 | Torchvision Link | squeezenet1_0.py |
squeezenet1_1 | PyTorch | 1, 3, 224, 224 | Torchvision Link | squeezenet1_1.py |
vgg11 | PyTorch | 1, 3, 224, 224 | Torchvision Link | vgg11.py |
vgg11_bn | PyTorch | 1, 3, 224, 224 | Torchvision Link | vgg11_bn.py |
vgg13 | PyTorch | 1, 3, 224, 224 | Torchvision Link | vgg13.py |
vgg13_bn | PyTorch | 1, 3, 224, 224 | Torchvision Link | vgg13_bn.py |
vgg16 | PyTorch | 1, 3, 224, 224 | Torchvision Link | vgg16.py |
vgg16_bn | PyTorch | 1, 3, 224, 224 | Torchvision Link | vgg16_bn.py |
vgg16-bn-7 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | vgg16-bn-7_fp32_224_224.py |
vgg19 | PyTorch | 1, 3, 224, 224 | Torchvision Link | vgg19.py |
vgg19_bn | PyTorch | 1, 3, 224, 224 | Torchvision Link | vgg19_bn.py |
vgg19-7 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | vgg19-7_fp32_224_224.py |
vgg19-bn-7 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | vgg19-bn-7_fp32_224_224.py |
wide_resnet101_2 | PyTorch | 1, 3, 224, 224 | Torchvision Link | wide_resnet101_2.py |
wide_resnet50_2 | PyTorch | 1, 3, 224, 224 | Torchvision Link | wide_resnet50_2.py |
yolo-v2-tiny-tf | TensorFlow | 1, 416, 416, 3 | OpenVINO Link | yolo-v2-tiny-tf.py |
yolo-v3-tf | TensorFlow | 1, 416, 416, 3 | OpenVINO Link | yolo-v3-tf.py |
yolo-v3-tiny-tf | TensorFlow | 1, 416, 416, 3 | OpenVINO Link | yolo-v3-tiny-tf.py |
yolo-v4-tf | TensorFlow | 1, 416, 416, 3 | OpenVINO Link | yolo-v4-tf.py |
yolo-v4-tiny-tf | Keras | 1, 416, 416, 3 | OpenVINO Link | yolo-v4-tiny-tf.py |
yolof | PyTorch | 1, 3, 608, 608 | OpenVINO Link | yolof.py |
zfnet512-9 | ONNX | 1, 3, 224, 224 | ONNX Zoo Link | zfnet512-9_fp32_224_224.py |
SiMa.ai's subset of compatible models references repositories like Torchvison, ONNX Model Zoo, and Open Model Zoo for OpenVINO. These repositories offer pretrained models in floating-point 32-bit (FP32) format that need to be quantized and compiled for SiMa.ai's MLSoC using the Palette's ModelSDK. To this end, certain helper scripts are provided as part of this repository that fetch the models from original pretrained model repositories. Here we describe instructions for getting the models from these repositories. To review model details, refer to the original papers, datasets, etc. mentioned in the corresponding source links provided. Bring your data and get started on running models of interest on SiMa.ai's MLSoC.
Torchvision's torchvision.models
subpackage offers ML model architectures
along with pretrained weights. SiMa.ai's ModelSDK can consume models from
PyTorch that include the model topology and weights: either using TorchScript,
or exporting the models to ONNX. Given developers' familiarity with ONNX, this
repository provides a helper script (torchvision_to_onnx.py) to download
the Torchvision model(s) and convert them to ONNX automatically.
- To use the script, either clone the repository or download and copy to the Palette docker image.
- From inside the Palette container, the following command can be used to download and convert models:
user123@9bb247385914:/home/docker/sima-cli/models$ python torchvision_to_onnx.py --model_name densenet121
Downloading: "https://github.com/pytorch/vision/zipball/v0.16.0" to /root/.cache/torch/hub/v0.16.0.zip
/usr/local/lib/python3.10/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
warnings.warn(
/usr/local/lib/python3.10/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=DenseNet121_Weights.IMAGENET1K_V1`. You can also use `weights=DenseNet121_Weights.DEFAULT` to get the most up-to-date weights.
warnings.warn(msg)
Downloading: "https://download.pytorch.org/models/densenet121-a639ec97.pth" to /root/.cache/torch/hub/checkpoints/densenet121-a639ec97.pth
100%|��������������������������������������������������������������������������������������������������������| 30.8M/30.8M [00:00<00:00, 52.6MB/s]
Before torch.onnx.export tensor([[[[ 1.7745, 0.7670, -0.2136, ..., -1.5743, -0.4873, 1.0913],
[ 0.0137, -0.9518, 0.8827, ..., -0.1733, -0.1817, 2.1811],
[ 0.6135, -0.9099, -2.0007, ..., 0.3961, -0.4789, -1.5344],
...,
[-1.1500, -0.1356, 0.5894, ..., -1.2137, 0.8792, 0.6761],
[-0.3458, -0.6029, 0.9585, ..., 0.0141, -1.8495, -0.9339],
[-0.4006, -1.1134, -0.3972, ..., -0.5107, -0.8084, -1.4360]]]])
============== Diagnostic Run torch.onnx.export version 2.0.1+cpu ==============
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================
After torch.onnx.export
- The downloaded and converted model can be viewed as below.
user123@9bb247385914:/home/docker/sima-cli/models$ ls
densenet121.onnx LICENSE.txt README.md scripts torchvision_to_onnx.py
- The model is now successully downloaded from Torchvision repository and ready for usage with Palette tools.
ONNX Model Zoo is a repository of pretrained ML models for various tasks including computer vision.
In order to download a Palette-supported pretrained model from ONNX model zoo, the link provided in the Model List section above can be used.
Palette has been verified against the model version (indicated by the model name suffix) and it is recommended to download the correct version from the ONNX model zoo.
For example, to download mobilenetv2-7
model from ONNX model zoo, the correct version can be located at the link provided in table above
and the ONNX model can either be manually downloaded or using the wget
as shown below.
user123@9bb247385914:/home/docker/sima-cli/models$ wget https://github.com/onnx/models/blob/main/archive/vision/classification/mobilenet/model/mobilenetv2-7.onnx
--2023-12-22 01:55:36-- https://github.com/onnx/models/blob/main/archive/vision/classification/mobilenet/model/mobilenetv2-7.onnx
Resolving github.com (github.com)... 140.82.112.4
Connecting to github.com (github.com)|140.82.112.4|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 10145 (9.9K) [text/plain]
Saving to: ‘mobilenetv2-7.onnx’
mobilenetv2-7.onnx 100%[=========================================================>] 9.91K --.-KB/s in 0s
2023-12-22 01:55:37 (75.9 MB/s) - ‘mobilenetv2-7.onnx’ saved [10145/10145]
Intel's OpenVINO model zoo offers a helper tool omz_downloader
to
download the pretrained models to local system. This comes as part of
openvino-dev
package installable via pip command. Follow instructions in OpenVINO installation guide
to install omz_downloader
and download pretrained OpenVINO models. In cases where the original pretrained model is in *.pth
format, it is essential to convert to *.onnx
format using
omz_converter
tool or other PyTorch to ONNX converter tools.
Helper scripts to compile each model are provided through this repository. The
source code for these helper scripts can be reviewed using links in the Model
List section. These compiler scripts come with multiple preconfigured settings
for input resolutions, calibration scheme, quantization method etc. These can
be adjusted per needs and full details on how to exercise various compile
options are provided in Palette User Guide, available through SiMa.ai
developer zone. After cloning this repository, the user should download the
model of interest, and access the corresponding script for that model. It is
important to ensure the path of model file in the helper script, referenced
through model_path
variable, is correct.
- The model can be compiled from the Palette docker using this helper script with the command:
python [HELPER_SCRIPT]
user123@9bb247385914:/home/docker/sima-cli/models$ python torchvision_to_onnx.py --model_name densenet121
user123@9bb247385914:/home/docker/sima-cli/models$ mkdir models && mv densenet121.onnx models/
user123@9bb247385914:/home/docker/sima-cli/models$ ls ./models
densenet121.onnx
user123@9bb247385914:/home/docker/sima-cli/models$ python scripts/densenet121/densenet121.py
Model SDK version: 1.3.0
Running calibration ...DONE
...
Running quantization ...DONE
- After successful compilation, the resulting files are generated in
result/[MODEL_NAME_CALIBRATION_OPTIONS]/mpk
folder which now has*.yaml, *.json, *.lm
generated as outputs of compilation. These files together can be used for performance estimation as described in the Palette User Guide available as part of Palette.
user123@9bb247385914:/home/docker/sima-cli/models$ ls
LICENSE.txt models README.md result scripts torchvision_to_onnx.py
user123@9bb247385914:/home/docker/sima-cli/models$ ls result/
densenet121_asym_True_per_ch_True
user123@9bb247385914:/home/docker/sima-cli/models$ ls result/densenet121_asym_True_per_ch_True/mpk/
densenet121_mpk.tar.gz densenet121_stage1_mla_compressed.mlc densenet121_stage1_mla.ifm.mlc densenet121_stage1_mla.mlc densenet121_stage1_mla.ofm_chk.mlc
The primary license for the models in the SiMa.ai Model List is the BSD 3-Clause License, see LICENSE. However:
Certain models may be subject to additional restrictions and/or terms. To the extent a LICENSE.txt file is provided for a particular model, please review the LICENSE.txt file carefully as you are responsible for your compliance with such restrictions and/or terms.
Footnotes
-
Models that compile and run fully on SiMa.ai MLSoC Machine Learning Accelerator (MLA) engine. ↩