- Open Access
Measurement and compensation of horizontal crabbing at the Cornell Electron Storage Ring Test Accelerator
Phys. Rev. ST Accel. Beams 17, 044002 – Published 9 April, 2014
DOI: https://doi.org/10.1103/PhysRevSTAB.17.044002
Abstract
In storage rings, horizontal dispersion in the rf cavities introduces horizontal-longitudinal () coupling, contributing to beam tilt in the plane. This coupling can be characterized by a “crabbing” dispersion term that appears in the normal mode decomposition of the 1-turn transfer matrix. is proportional to the rf cavity voltage and the horizontal dispersion in the cavity. We report experiments at the Cornell Electron Storage Ring Test Accelerator where coupling was explored using three lattices with distinct crabbing properties. We characterize the coupling for each case by measuring the horizontal projection of the beam with a beam size monitor. The three lattice configurations correspond to (i) 16 mrad tilt at the beam size monitor source point, (ii) compensation of the introduced by one of two pairs of rf cavities with the second, and (iii) zero dispersion in rf cavities, eliminating entirely. Additionally, intrabeam scattering is evident in our measurements of beam size vs rf voltage.
Article Text
References (16)
- T. Abe, K. Akai, M. Akemoto et al., in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. 27.
- M. Palmer et al., in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), p. 4200.
- D. Sagan, Nucl. Instrum. Methods Phys. Res., Sect. A 558, 356 (2006).
- R. Calaga, R. Toms, and F. Zimmermann, in Proceedings of the International Particle Accelerator Conference, Kyoto, Japan (ICR, Kyoto, 2010), p. 1240.
- A. Zholents, P. Heimann, M. Zolotorev, and J. Byrd, Nucl. Instrum. Methods Phys. Res., Sect. A 425, 385 (1999).
- D. A. Edwards and L. C. Teng, IEEE Trans. Nucl. Sci. 20, 885 (1973).
- D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999).
- K. Ohmi, K. Hirata, and K. Oide, Phys. Rev. E 49, 751 (1994).
- A. Wolski, Phys. Rev. ST Accel. Beams 9, 024001 (2006).
- N. T. Rider, M. G. Billing, M. P. Ehrlichman, D. P. Peterson, D. Rubin, J. P. Shanks, K. G. Sonnad, M. A. Palmer, and J. W. Flanagan, in Proceedings of the International Beam Instrumentation Conference 2012, Tsukuba, p. 585.
- J. P. Alexander and D. P. Peterson, in The Handbook of Accelerator Physics and Engineering 2nd Edition, edited by A. W. Chao, K. H. Mess, M. Tigner, and F. Zimmerman (World Scientific, Singapore, 2013), p. 721.
- S. T. Wang, D. Rubin, J. Conway, M. Palmer, D. Hartill, R. Campbell, and R. Holtzapple, Nucl. Instrum. Methods Phys. Res., Sect. A 703, 80 (2013).
- R. Holtzapple, M. Billing, D. Hartill, M. Stedinger, and B. Podobedov, Phys. Rev. ST Accel. Beams 3, 034401 (2000).
- K. Kubo and K. Oide, Phys. Rev. ST Accel. Beams 4, 124401 (2001).
- M. P. Ehrlichman, W. Hartung, B. Heltsley, D. P. Peterson, N. Rider, D. Rubin, D. Sagan, J. Shanks, S. T. Wang, R. Campbell, and R. Holtzapple, Phys. Rev. ST Accel. Beams 16, 104401 (2013).
- E. Forest, Beam Dynamics: A New Attitude and Framework (Harwood Academic Publishers, Chur, Switzerland, 1998).