+

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Quantum synchronization of a single trapped-ion qubit

Liyun Zhang1,2,3,*, Zhao Wang1,2,3,*, Yucheng Wang1,2,3, Junhua Zhang1,2,3, Zhigang Wu1,2,3, Jianwen Jie4,1,2,3,†, and Yao Lu1,2,3,‡

  • 1Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
  • 2International Quantum Academy, Shenzhen 518048, China
  • 3Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
  • 4Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
  • *These authors contributed equally to this work.
  • Jianwen.Jie1990@gmail.com
  • luy7@sustech.edu.cn

Phys. Rev. Research 5, 033209 – Published 25 September, 2023

DOI: https://doi.org/10.1103/PhysRevResearch.5.033209

Abstract

Synchronizing a few-level quantum system is of fundamental importance to the understanding of synchronization in the deep quantum regime. Whether a two-level system, the smallest quantum system, can be synchronized has been theoretically debated for the past several years. Here, for the first time, we demonstrate that a qubit can indeed be synchronized to an external driving signal by using a trapped-ion system. By engineering fully controllable gain and damping processes, an ion qubit is locked to the driving signal and oscillates in phase. Moreover, upon tuning the parameters of the driving signal, we observe characteristic features of the Arnold tongue as well. Our measurements agree remarkably well with numerical simulations based on recent theory on qubit synchronization. By synchronizing the basic unit of quantum information, our study opens up the possibility of exploring the application of quantum synchronization to quantum information processing in the near future.

Physics Subject Headings (PhySH)

Article Text

References (48)

  1. A. Bell, “The horologium oscillatorium of christian huygens”, Nature (London) 148, 245 (1941).
  2. L. M. Pecora and T. L. Carroll, Synchronization in Chaotic Systems, Phys. Rev. Lett. 64, 821 (1990).
  3. N. F. Rulkov, Images of synchronized chaos: Experiments with circuits, Chaos 6, 262 (1996).
  4. C. Schäfer, M. G. Rosenblum, J. Kurths, and H.-H. Abel, Heartbeat synchronized with ventilation, Nature (London) 392, 239 (1998).
  5. R. E. Goldstein, M. Polin, and I. Tuval, Noise and Synchronization in Pairs of Beating Eukaryotic Flagella, Phys. Rev. Lett. 103, 168103 (2009).
  6. J. Fell and N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci. 12, 105 (2011).
  7. M. H. Matheny, M. Grau, L. G. Villanueva, R. B. Karabalin, M. C. Cross, and M. L. Roukes, Phase Synchronization of Two Anharmonic Nanomechanical Oscillators, Phys. Rev. Lett. 112, 014101 (2014).
  8. A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, UK, 2001).
  9. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillators, Adiwes International Series in Physics (Elsevier, Amsterdam, 2013).
  10. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, Quantum computers, Nature (London) 464, 45 (2010).
  11. J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  12. Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr, F. T. Chong, B. DeMarco, D. Englund, E. Farhi, B. Fefferman, A. V. Gorshkov, A. Houck, J. Kim, S. Kimmel, M. Lange, S. Lloyd, M. D. Lukin, D. Maslov, P. Maunz, C. Monroe et al., Quantum computer systems for scientific discovery, PRX Quantum 2, 017001 (2021).
  13. O. V. Zhirov and D. L. Shepelyansky, Quantum synchronization, Eur. Phys. J. D 38, 375 (2006).
  14. I. Goychuk, J. Casado-Pascual, M. Morillo, J. Lehmann, and P. Hänggi, Quantum Stochastic Synchronization, Phys. Rev. Lett. 97, 210601 (2006).
  15. O. V. Zhirov and D. L. Shepelyansky, Synchronization and Bistability of a Qubit Coupled to a Driven Dissipative Oscillator, Phys. Rev. Lett. 100, 014101 (2008).
  16. M. A. Lohe, Quantum synchronization over quantum networks, J. Phys. A: Math. Theor. 43, 465301 (2010).
  17. A. Mari, A. Farace, N. Didier, V. Giovannetti, and R. Fazio, Measures of Quantum Synchronization in Continuous Variable Systems, Phys. Rev. Lett. 111, 103605 (2013).
  18. T. E. Lee and H. R. Sadeghpour, Quantum Synchronization of Quantum van der Pol Oscillators with Trapped Ions, Phys. Rev. Lett. 111, 234101 (2013).
  19. S. Walter, A. Nunnenkamp, and C. Bruder, Quantum Synchronization of a Driven Self-Sustained Oscillator, Phys. Rev. Lett. 112, 094102 (2014).
  20. M. Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J. Holland, Synchronization of Two Ensembles of Atoms, Phys. Rev. Lett. 113, 154101 (2014).
  21. H. Eneriz, D. Rossatto, F. A. Cárdenas-López, E. Solano, and M. Sanz, Degree of quantumness in quantum synchronization, Sci. Rep. 9, 19933 (2019).
  22. T. E. Lee, C.-K. Chan, and S. Wang, Entanglement tongue and quantum synchronization of disordered oscillators, Phys. Rev. E 89, 022913 (2014).
  23. S. Walter, A. Nunnenkamp, and C. Bruder, Quantum synchronization of two Van der Pol oscillators, Ann. Phys. 527, 131 (2015).
  24. N. Lörch, S. E. Nigg, A. Nunnenkamp, R. P. Tiwari, and C. Bruder, Quantum Synchronization Blockade: Energy Quantization Hinders Synchronization of Identical Oscillators, Phys. Rev. Lett. 118, 243602 (2017).
  25. S. Sonar, M. Hajdušek, M. Mukherjee, R. Fazio, V. Vedral, S. Vinjanampathy, and L.-C. Kwek, Squeezing Enhances Quantum Synchronization, Phys. Rev. Lett. 120, 163601 (2018).
  26. S. Dutta and N. R. Cooper, Critical Response of a Quantum van der Pol Oscillator, Phys. Rev. Lett. 123, 250401 (2019).
  27. A. Chia, L. C. Kwek, and C. Noh, Relaxation oscillations and frequency entrainment in quantum mechanics, Phys. Rev. E 102, 042213 (2020).
  28. W.-K. Mok, L.-C. Kwek, and H. Heimonen, Synchronization boost with single-photon dissipation in the deep quantum regime, Phys. Rev. Res. 2, 033422 (2020).
  29. L. Ben Arosh, M. C. Cross, and R. Lifshitz, Quantum limit cycles and the Rayleigh and van der Pol oscillators, Phys. Rev. Res. 3, 013130 (2021).
  30. B. Van der Pol, LXXXVIII. On “relaxation-oscillations”, London, Edinburgh, Dublin Philos. Mag. J. Sci. 2, 978 (1926).
  31. A. Roulet and C. Bruder, Synchronizing the Smallest Possible System, Phys. Rev. Lett. 121, 053601 (2018).
  32. A. Roulet and C. Bruder, Quantum Synchronization and Entanglement Generation, Phys. Rev. Lett. 121, 063601 (2018).
  33. M. Koppenhöfer and A. Roulet, Optimal synchronization deep in the quantum regime: Resource and fundamental limit, Phys. Rev. A 99, 043804 (2019).
  34. A. W. Laskar, P. Adhikary, S. Mondal, P. Katiyar, S. Vinjanampathy, and S. Ghosh, Observation of Quantum Phase Synchronization in Spin-1 Atoms, Phys. Rev. Lett. 125, 013601 (2020).
  35. M. Koppenhöfer, C. Bruder, and A. Roulet, Quantum synchronization on the IBM Q system, Phys. Rev. Res. 2, 023026 (2020).
  36. R. Gilmore, C. M. Bowden, and L. M. Narducci, Classical-quantum correspondence for multilevel systems, Phys. Rev. A 12, 1019 (1975).
  37. L.-C. Kwek, No synchronization for qubits, Physics 11, 75 (2018).
  38. A. Parra-López and J. Bergli, Synchronization in two-level quantum systems, Phys. Rev. A 101, 062104 (2020).
  39. G. L. Giorgi, F. Galve, and R. Zambrini, Probing the spectral density of a dissipative qubit via quantum synchronization, Phys. Rev. A 94, 052121 (2016).
  40. B. Buča, C. Booker, and D. Jaksch, Algebraic theory of quantum synchronization and limit cycles under dissipation, SciPost Phys. 12, 097 (2022).
  41. P. T. H. Fisk, M. J. Sellars, M. A. Lawn, and C. Coles, Accurate measurement of the 12.6 GHz “Clock” transition in trapped 171Yb+ ions, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 344 (1997).
  42. S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and C. Monroe, Manipulation and detection of a trapped Yb+ hyperfine qubit, Phys. Rev. A 76, 052314 (2007).
  43. J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L. Luo, Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms, Nat. Commun. 10, 855 (2019).
  44. L. Ding, K. Shi, Q. Zhang, D. Shen, X. Zhang, and W. Zhang, Experimental Determination of PT-Symmetric Exceptional Points in a Single Trapped Ion, Phys. Rev. Lett. 126, 083604 (2021).
  45. M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Optically addressable nuclear spins in a solid with a six-hour coherence time, Nature (London) 517, 177 (2015).
  46. F. Verstraete, M. M. Wolf, and J. Ignacio Cirac, Quantum computation and quantum-state engineering driven by dissipation, Nat. Phys. 5, 633 (2009).
  47. P. M. Harrington, E. J. Mueller, and K. W. Murch, Engineered dissipation for quantum information science, Nat. Rev. Phys. 4, 660 (2022).
  48. F. Reiter and A. S. Sørensen, Effective operator formalism for open quantum systems, Phys. Rev. A 85, 032111 (2012).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载