- Open Access
Multi-body wave function of ground and low-lying excited states using unornamented deep neural networks
Phys. Rev. Research 5, 033189 – Published 14 September, 2023
DOI: https://doi.org/10.1103/PhysRevResearch.5.033189
Abstract
We propose a method to calculate wave functions and energies not only of the ground state but also of low-lying excited states using a deep neural network and the unsupervised machine learning technique. For systems composed of identical particles, a simple method to perform symmetrization for bosonic systems and antisymmetrization for fermionic systems is also proposed.
Physics Subject Headings (PhySH)
Article Text
References (83)
- L. D. Faddeev, Scattering theory for a three-particle system, Sov. Phys. JETP 12, 1014 (1961) [Zh. Eksp. Teor. Fiz. 39, 1459 (1961)].
- O. A. Yakubovskĭ, On the integral equations in the theory of particle scattering, Sov. J. Nucl. Phys. 5, 937 (1967) [J. Nucl. Phys. (U.S.S.R.) 5, 1312 (1967)].
- M. Fabre de la Ripelle, The potential harmonic expansion method, Ann. Phys. 147, 281 (1983).
- J. Carlson, Green's function Monte Carlo study of light nuclei, Phys. Rev. C 36, 2026 (1987).
- M. Kamimura, Nonadiabatic coupled-rearrangement-channel approach to muonic molecules, Phys. Rev. A 38, 621 (1988).
- H. Kamada and W. Glöckle, Solutions of the Yakubovsky equations for four-body model systems, Nucl. Phys. A 548, 205 (1992).
- K. Varga and Y. Suzuki, Precise solution of few-body problems with the stochastic variational method on a correlated Gaussian basis, Phys. Rev. C 52, 2885 (1995).
- M. Viviani, A. Kievsky, and S. Rosati, Calculation of the -particle ground state, Few-Body Syst. 18, 25 (1995).
- P. Navrátil and B. R. Barrett, Four-nucleon shell-model calculations in a Faddeev-like approach, Phys. Rev. C 59, 1906 (1999).
- P. Navrátil, G. P. Kamuntavičius, and B. R. Barrett, Few-nucleon systems in a translationally invariant harmonic oscillator basis, Phys. Rev. C 61, 044001 (2000).
- N. Barnea, W. Leidemann, and G. Orlandini, State dependent effective interaction for the hyperspherical formalism, Phys. Rev. C 61, 054001 (2000).
- H. Kamada, A. Nogga, W. Glöckle, E. Hiyama, M. Kamimura, K. Varga, Y. Suzuki, M. Viviani, A. Kievsky, S. Rosati, J. Carlson, S. C. Pieper, R. B. Wiringa, P. Navrátil, B. R. Barrett, N. Barnea, W. Leidemann, and G. Orlandini, Benchmark test calculation of a four-nucleon bound state, Phys. Rev. C 64, 044001 (2001).
- D. Ceperley, Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions, Phys. Rev. B 18, 3126 (1978).
- D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45, 566 (1980).
- J. J. Shepherd, G. Booth, A. Grüneis, and A. Alavi, Full configuration interaction perspective on the homogeneous electron gas, Phys. Rev. B 85, 081103(R) (2012).
- J. J. Shepherd, G. H. Booth, and A. Alavi, Investigation of the full configuration interaction quantum Monte Carlo method using homogeneous electron gas models, J. Chem. Phys. 136, 244101 (2012).
- G. H. Booth, A. Grüneis, G. Kresse, and A. Alavi, Towards an exact description of electronic wave functions in real solids, Nature (London) 493, 365 (2013).
- D. Lonardoni, S. Gandolfi, J. E. Lynn, C. Petrie, J. Carlson, K. E. Schmidt, and A. Schwenk, Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions, Phys. Rev. C 97, 044318 (2018).
- T. Shen, Y. Liu, Y. Yu, and B. M. Rubenstein, Finite temperature auxiliary field quantum Monte Carlo in the canonical ensemble, J. Chem. Phys. 153, 204108 (2020).
- J. A. Pople, J. S. Binkley, and R. Seeger, Theoretical models incorporating electron correlation, Int. J. Quantum Chem. 10, 1 (1976).
- J. A. Pople, R. Seeger, and K. Raghavachari, Variational configuration interaction methods and comparison with perturbation theory, Int. J. Quantum Chem. 12, 149 (1977).
- J. A. Pople, Nobel Lecture: Quantum chemical models, Rev. Mod. Phys. 71, 1267 (1999).
- F. Coester, Bound states of a many-particle system, Nucl. Phys. 7, 421 (1958).
- F. Coester and H. Kümmel, Short-range correlations in nuclear wave functions, Nucl. Phys. 17, 477 (1960).
- J. Čížek, On the correlation problem in atomic and molecular systems: Calculation of wave-function components in Ursell-type expansion using quantum-field theoretical methods, J. Chem. Phys. 45, 4256 (1966).
- J. Čížek and J. Paldus, Correlation problems in atomic and molecular systems III. Rederivation of the coupled-pair many-electron theory using the traditional quantum chemical methodst, Int. J. Quantum Chem. 5, 359 (1971).
- P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1964).
- W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133 (1965).
- W. Kohn, Nobel Lecture: Electronic structure of matter—Wave functions and density functionals, Rev. Mod. Phys. 71, 1253 (1999).
- S. R. White, Density Matrix Formulation for Quantum Renormalization Groups, Phys. Rev. Lett. 69, 2863 (1992).
- S. R. White and R. L. Martin, Ab initio quantum chemistry using the density matrix renormalization group, J. Chem. Phys. 110, 4127 (1999).
- U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259 (2005).
- A. Baiardi and M. Reiher, The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges, J. Chem. Phys. 152, 040903 (2020).
- V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory, J. Phys.: Condens. Matter 9, 7359 (1997).
- G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78, 865 (2006).
- G. Knizia and G. K.-L. Chan, Density Matrix Embedding: A Simple Alternative to Dynamical Mean-Field Theory, Phys. Rev. Lett. 109, 186404 (2012).
- R. Brockmann and J. Frank, Lattice Quantum Hadrodynamics, Phys. Rev. Lett. 68, 1830 (1992).
- J.-W. Chen and D. B. Kaplan, Lattice Theory for Low-Energy Fermions at Nonzero Chemical Potential, Phys. Rev. Lett. 92, 257002 (2004).
- D. Lee, Lattice simulations for few- and many-body systems, Prog. Part. Nucl. Phys. 63, 117 (2009).
- J. E. Drut and A. N. Nicholson, Lattice methods for strongly interacting many-body systems, J. Phys. G 40, 043101 (2013).
- L. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, NY, 1968).
- A. D. Becke, Perspective: Fifty years of density-functional theory in chemical physics, J. Chem. Phys. 140, 18A301 (2014).
- R. Jastrow, Many-body problem with strong forces, Phys. Rev. 98, 1479 (1955).
- P. Seth, P. L. Ríos, and R. J. Needs, Quantum Monte Carlo study of the first-row atoms and ions, J. Chem. Phys. 134, 084105 (2011).
- Y. Nomura, A. S. Darmawan, Y. Yamaji, and M. Imada, Restricted Boltzmann machine learning for solving strongly correlated quantum systems, Phys. Rev. B 96, 205152 (2017).
- D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C. Foulkes, Ab initio solution of the many-electron Schrödinger equation with deep neural networks, Phys. Rev. Res. 2, 033429 (2020).
- J. Hermann, Z. Schätzle, and F. Noé, Deep-neural-network solution of the electronic Schrödinger equation, Nat. Chem. 12, 891 (2020).
- G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2, 303 (1989).
- K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4, 251 (1991).
- T. Cheon, Green function Monte Carlo method for excited states of quantum system, Prog. Theor. Phys. 96, 971 (1996).
- H. Masui and T. Sato, Monte Carlo study of bound states in a few-nucleon system: Method of continued fractions, Prog. Theor. Phys. 100, 977 (1998).
- L. Hedin, On correlation effects in electron spectroscopies and the GW approximation, J. Phys.: Condens. Matter 11, R489 (1999).
- M. Bender, P.-H. Heenen, and P.-G. Reinhard, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys. 75, 121 (2003).
- G. Colò, P. F. Bortignon, H. Sagawa, K. Moghrabi, M. Grasso, and N. Van Giai, Microscopic theory of particle-vibration coupling, J. Phys.: Conf. Ser. 321, 012018 (2011).
- T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, and K. Yabana, Time-dependent density-functional description of nuclear dynamics, Rev. Mod. Phys. 88, 045004 (2016).
- L. Reining, The GW approximation: Content, successes and limitations, WIREs Comput. Mol. Sci. 8, e1344 (2018).
- M. T. Entwistle, Z. Schätzle, P. A. Erdman, J. Hermann, and F. Noé, Electronic excited states in deep variational Monte Carlo, Nat. Commun. 14, 274 (2023).
- H. Saito, Method to solve quantum few-body problems with artificial neural networks, J. Phys. Soc. Jpn. 87, 074002 (2018).
- J. W. T. Keeble and A. Rios, Machine learning the deuteron, Phys. Lett. B 809, 135743 (2020).
- Y. Wang, Y. Liao, and H. Xie, Solving Schrödinger equation using tensor neural network, arXiv:2209.12572 [physics.comp-ph].
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg et al., TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow.org.
- D. P. Kingma and J. Ba, A method for stochastic optimization, in Third International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,May 7–9, 2015, Conference Track Proceedings, edited by Y. Bengio and Y. Le-Cun (2015), arXiv:1412.6980 [cs.LG].
- N. Tajima, Hartree-Fock+BCS Approach to Unstable Nuclei with the Skyrme Force, Prog. Theor. Phys. Suppl. 142, 265 (2001).
- If is directly discretized, wave functions of the ground state and excited states can be obtained.
- Due to the internal code of the Tensorflow, when the error of the loss function is calculated, a single precision floating point number (float32) seems to be used. Thus, the error of the loss function becomes zero if its actual value is smaller than about . Note that the convergence criteria of the DFT calculation is often about or even ; for instance, see the sample input of Ref. [83].
- K. Kisamori, S. Shimoura, H. Miya, S. Michimasa, S. Ota, M. Assie, H. Baba, T. Baba, D. Beaumel, M. Dozono, T. Fujii, N. Fukuda, S. Go, F. Hammache, E. Ideguchi, N. Inabe, M. Itoh, D. Kameda, S. Kawase, T. Kawabata et al., Candidate Resonant Tetraneutron State Populated by the Reaction, Phys. Rev. Lett. 116, 052501 (2016).
- T. Faestermann, A. Bergmaier, R. Gernhäuser, D. Koll, and M. Mahgoub, Indications for a bound tetraneutron, Phys. Lett. B 824, 136799 (2022).
- M. Duer, T. Aumann, R. Gernhäuser, V. Panin, S. Paschalis, D. M. Rossi, N. L. Achouri, D. Ahn, H. Baba, C. A. Bertulani, M. Böhmer, K. Boretzky, C. Caesar, N. Chiga, A. Corsi, D. Cortina-Gil, C. A. Douma, F. Dufter, Z. Elekes, J. Feng et al., Observation of a correlated free four-neutron system, Nature (London) 606, 678 (2022).
- A. N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, and S. Jochim, From few to many: Observing the formation of a Fermi sea one atom at a time, Science 342, 457 (2013).
- K. Choo, G. Carleo, N. Regnault, and T. Neupert, Symmetries and Many-Body Excitations with Neural-Network Quantum States, Phys. Rev. Lett. 121, 167204 (2018).
- Y. Nomura, Machine learning quantum states—Extensions to Fermion–Boson coupled systems and excited-state calculations, J. Phys. Soc. Jpn. 89, 054706 (2020).
- S. A. Sato, K. Yabana, Y. Shinohara, T. Otobe, K.-M. Lee, and G. F. Bertsch, Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators, Phys. Rev. B 92, 205413 (2015).
- Y. Tanaka and S. Tsuneyuki, Development of the temperature-dependent interatomic potential for molecular dynamics simulation of metal irradiated with an ultrashort pulse laser, J. Phys.: Condens. Matter 34, 165901 (2022).
- K. Yabana, T. Tazawa, Y. Abe, and P. Bożek, Time-dependent mean-field description for multiple electron transfer in slow ion-cluster collisions, Phys. Rev. A 57, R3165 (1998).
- K. Sekizawa and K. Yabana, Time-dependent Hartree-Fock calculations for multinucleon transfer processes in , , and reactions, Phys. Rev. C 88, 014614 (2013).
- B. B. Back, H. Esbensen, C. L. Jiang, and K. E. Rehm, Recent developments in heavy-ion fusion reactions, Rev. Mod. Phys. 86, 317 (2014).
- J. Zhao, J. Xiang, Z.-P. Li, T. Nikšić, D. Vretenar, and S.-G. Zhou, Time-dependent generator-coordinate-method study of mass-asymmetric fission of actinides, Phys. Rev. C 99, 054613 (2019).
- K. Sekizawa and K. Hagino, Time-dependent Hartree-Fock plus Langevin approach for hot fusion reactions to synthesize the superheavy element, Phys. Rev. C 99, 051602(R) (2019).
- G. Carleo, Y. Nomura, and M. Imada, Constructing exact representations of quantum many-body systems with deep neural networks, Nat. Commun. 9, 5322 (2018).
- K. Hashimoto, S. Sugishita, A. Tanaka, and A. Tomiya, Deep learning and the AdS/CFT correspondence, Phys. Rev. D 98, 046019 (2018).
- K. Hashimoto, S. Sugishita, A. Tanaka, and A. Tomiya, Deep learning and holographic QCD, Phys. Rev. D 98, 106014 (2018).
- K. Hashimoto, AdS/CFT correspondence as a deep Boltzmann machine, Phys. Rev. D 99, 106017 (2019).
- T. Ozaki, K. Hino, H. Kawai, and M. Toyoda, ADPACK Ver. 2.2, https://www.openmx-square.org/adpack_man2.2/adpack2_2.html.