+

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

High-temperature antiferromagnetism in Yb based heavy fermion systems proximate to a Kondo insulator

Shintaro Suzuki1,*, Kou Takubo1,*, Kentaro Kuga2, Wataru Higemoto3,4, Takashi U. Ito3, Takahiro Tomita1, Yasuyuki Shimura5, Yosuke Matsumoto6, Cédric Bareille1 et al.

Hiroki Wadati1, Shik Shin1, and Satoru Nakatsuji1,7,8,9,10,†

  • 1Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwa, Chiba 277-8581, Japan
  • 2RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
  • 3Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
  • 4Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
  • 5Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi Hiroshima 739-8530, Japan
  • 6Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
  • 7Department of Physics, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
  • 8CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
  • 9Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
  • 10Trans-scale Quantum Science Institute, University of Tokyo, Tokyo 113-0033, Japan
  • *These authors contributed equally to this work.
  • To whom correspondence should be addressed: satoru@phys.s.u-tokyo.ac.jp

Phys. Rev. Research 3, 023140 – Published 24 May, 2021

DOI: https://doi.org/10.1103/PhysRevResearch.3.023140

Abstract

Given the parallelism between the physical properties of Ce- and Yb-based magnets and heavy fermions due to the electron-hole symmetry, it has been rather odd that the transition temperature of the Yb-based compounds is normally very small, as low as 1K or even lower, whereas Ce counterparts may often have the transition temperature well exceeding 10 K. Here, we report our experimental discovery of the transition temperature reaching 20 K in a Yb-based compound at ambient pressure. The Mn substitution at the Al site in an intermediate valence state of αYbAlB4 not only induces antiferromagnetic transition at a record high temperature of 20 K but also transforms the heavy-fermion liquid state in αYbAlB4 into a highly resistive metallic state proximate to a Kondo insulator.

Physics Subject Headings (PhySH)

Article Text

References (91)

  1. H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79, 1015 (2007).
  2. P. Gegenwart, Q. Si, and F. Steglich, Quantum criticality in heavy-fermion metals, Nat. Phys. 4, 186 (2008).
  3. Z. Fisk, P. C. Canfield, W. P. Beyermann, J. D. Thompson, M. F. Hundley, H. R. Ott, E. Felder, M. B. Maple, M. A. Lopez de la Torre, P. Visani, and C. L. Seaman, Massive Electron State in YbBiPt, Phys. Rev. Lett. 67, 3310 (1991).
  4. H. Hegger, C. Petrovic, E. G. Moshopoulou, M. F. Hundley, J. L. Sarrao, Z. Fisk, and J. D. Thompson, Pressure-Induced Superconductivity in Quasi-2D CeRhIn5, Phys. Rev. Lett. 84, 4986 (2000).
  5. P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magnetic-Field Induced Quantum Critical Point in YbRh2Si2, Phys. Rev. Lett. 89, 056402 (2002).
  6. H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich, Observation of two distinct superconducting phases in CeCu2Si2, Science 302, 2104 (2003).
  7. A. Bianchi, R. Movshovich, C. Capan, P. G. Pagliuso, and J. L. Sarrao, Possible Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in CeCoIn5, Phys. Rev. Lett. 91, 187004 (2003).
  8. S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson et al., Superconductivity and quantum criticality in the heavy-fermion system βYbAlB4, Nat. Phys. 4, 603 (2008).
  9. A. Sakai and S. Nakatsuji, Kondo effects and multipolar order in the cubic PrTr2Al20 (Tr = Ti, V), J. Phys. Soc. Jpn. 80, 063701 (2011).
  10. K. Matsubayashi, T. Tanaka, A. Sakai, S. Nakatsuji, Y. Kubo, and Y. Uwatoko, Pressure-Induced Heavy Fermion Superconductivity in the Nonmagnetic Quadrupolar System PrTi2Al20, Phys. Rev. Lett. 109, 187004 (2012).
  11. M. Tsujimoto, Y. Matsumoto, T. Tomita, A. Sakai, and S. Nakatsuji, Heavy-Fermion Superconductivity in the Quadrupole Ordered State of PrV2Al20, Phys. Rev. Lett. 113, 267001 (2014).
  12. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  13. S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang et al., A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class, Nat. Commun. 6, 7373 (2015).
  14. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, et al., Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science 349, 613 (2015).
  15. B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen et al., Experimental Discovery of Weyl Semimetal TaAs, Phys. Rev. X 5, 031013 (2015).
  16. S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature (London) 527, 212 (2015).
  17. K. Kuroda, T. Tomita, M.-T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi et al., Evidence for magnetic Weyl fermions in a correlated metal, Nat. Mater. 16, 1090 (2017).
  18. M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological Kondo Insulators, Phys. Rev. Lett. 104, 106408 (2010).
  19. S. Wolgast, Ç. Kurdak, K. Sun, J. W. Allen, D.-J. Kim, and Z. Fisk, Low-temperature surface conduction in the Kondo insulator SmB6, Phys. Rev. B 88, 180405(R) (2013).
  20. G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tinsman, A. Berkley, S. Wolgast, Y. S. Eo et al., Two-dimensional Fermi surfaces in Kondo insulator SmB6, Science 346, 1208 (2014).
  21. M. Neupane, N. Alidoust, S.-Y. Xu, T. Kondo, Y. Ishida, D. J. Kim, C. Liu, I. Belopolski, Y. J. Jo, T.-R. Chang et al., Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6, Nat. Commun. 4, 2991 (2013).
  22. E. Bauer, P. Fischer, F. Marabelli, M. Ellerby, K. A. McEwen, B. Roessli, and M. T. Fernandes-Dias, Magnetic structures and bulk magnetic properties of YbCu4M, M = Au, Pd, Physica B 234-236, 676 (1997).
  23. M. A. Avila, S. L. Bud'ko, C. Petrovic, R. A. Ribeiro, P. C. Canfield, A. V. Tsvyashchenko, and L. N. Fomicheva, Synthesis and properties of YbB2, J. Alloys Compd. 358, 56 (2003).
  24. S. Ohara, T. Yamashita, Y. Mori, and I. Sakamoto, Transport and magnetic properties of new heavy-fermion antiferromagnet YbNi3Al9, J. Phys.: Conf. Ser. 273, 012048 (2011).
  25. C. Rossel, K. N. Yang, M. B. Maple, Z. Fisk, E. Zirngiebl, and J. D. Thompson, Strong electronic correlations in a new class of Yb-based compounds: YbXCu4 (X = Ag, Au, Pd), Phys. Rev. B 35, 1914 (1987).
  26. S. K. Dhar, C. Mitra, P. Manfrinetti, A. Palenzona, and P. Bonville, Magnetic behaviour of Yb2Co3T9 (T = Ga and Al), Physica B 259-261, 150 (1999).
  27. O. Trovarelli, C. Geibel, B. Buschinger, R. Borth, S. Mederle, M. Grosche, G. Sparn, F. Steglich, O. Brosch, and L. Donnevert, Magnetic, transport, and thermal properties of Yb2T3X9 compounds (T = Rh, Ir; X = Al, Ga), Phys. Rev. B 60, 1136 (1999).
  28. S. L. Bud'ko, E. Morosan, and P. C. Canfield, Magnetic field induced non-Fermi-liquid behavior in YbAgGe single crystals, Phys. Rev. B 69, 014415 (2004).
  29. M. C. Bennett, P. Khalifah, D. A. Sokolov, W. J. Gannon, Y. Yiu, M. S. Kim, C. Henderson, and M. C. Aronson, A new unconventional antiferromagnet, Yb3Pt4, J. Magn. Magn. Mater. 321, 2021 (2009).
  30. B. Pollit, D. Dürkop, and P. Weidner, Magnetic ordering of mixed valent Yb3Pd4, J. Magn. Magn. Mater. 47-48, 583 (1985).
  31. C. Schank, G. Olesch, J. Köhler, U. Tegel, U. Klinger, J. Diehl, S. Klimm, G. Sparn, S. Horn, C. Geibel, and F. Steglich, YbNiAl: A new Yb-based heavy-fermion antiferromagnet, J. Magn. Magn. Mater. 140-144, 1237 (1995).
  32. A. Benoit, J. X. Boucherle, P. Convert, J. Flouquet, J. Palleau, and J. Schweizer, Magnetic structure of the compound CeIn3, Solid State Commun. 34, 293 (1980).
  33. J. Rossat-Mignod, P. Burlet, J. Villain, H. Bartholin, W. Tcheng-Si, D. Florence, and O. Vogt, Phase diagram and magnetic structures of CeSb, Phys. Rev. B 16, 440 (1977).
  34. G. Knebel, D. Aoki, G. Lapertot, B. Salce, J. Flouquet, T. Kawai, H. Muranaka, R. Settai, and Y. Ōnuki, High pressure phase diagram of the non-centrosymmetric antiferromagnet CeCoGe3, J. Phys. Soc. Jpn. 78, 074714 (2009).
  35. T. Nishioka, Y. Kawamura, T. Takesaka, R. Kobayashi, H. Kato, M. Matsumura, K. Kodama, K. Matsubayashi, and Y. Uwatoko, Novel phase transition and the pressure effect in YbFe2Al10-type CeT2Al10 (T = Fe, Ru, Os), J. Phys. Soc. Jpn. 78, 123705 (2009).
  36. J. Kawabata, T. Takabatake, K. Umeo, and Y. Muro, Suppression of antiferromagnetic order and hybridization gap by electron and hole doping in the Kondo semiconductor CeOs2Al10, Phys. Rev. B 89, 094404 (2014).
  37. K. Kuga, Y. Karaki, Y. Matsumoto, Y. Machida, and S. Nakatsuji, Superconducting Properties of the Non-Fermi-Liquid System βYbAlB4, Phys. Rev. Lett. 101, 137004 (2008).
  38. Y. Matsumoto, S. Nakatsuji, K. Kuga, Y. Karaki, N. Horie, Y. Shimura, T. Sakakibara, A. H. Nevidomskyy, and P. Coleman, Quantum criticality without tuning in the mixed valence compound βYbAlB4, Science 331, 316 (2011).
  39. T. Tomita, K. Kuga, Y. Uwatoko, P. Coleman, and S. Nakatsuji, Strange metal without magnetic criticality, Science 349, 506 (2015).
  40. Y. Matsumoto, K. Kuga, T. Tomita, Y. Karaki, and S. Nakatsuji, Anisotropic heavy-Fermi-liquid formation in valence-fluctuating αYbAlB4, Phys. Rev. B 84, 125126 (2011).
  41. K. Kuga, Y. Matsumoto, M. Okawa, S. Suzuki, T. Tomita, K. Sone, Y. Shimura, T. Sakakibara, D. Nishio-Hamane, Y. Karaki et al., Quantum valence criticality in a correlated metal, Sci. Adv. 4, eaao3547 (2018).
  42. S. Watanabe and K. Miyake, Quantum Valence Criticality as an Origin of Unconventional Critical Phenomena, Phys. Rev. Lett. 105, 186403 (2010).
  43. M. Okawa, M. Matsunami, K. Ishizaka, R. Eguchi, M. Taguchi, A. Chainani, Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino et al., Strong Valence Fluctuation in the Quantum Critical Heavy Fermion Superconductor βYbAlB4: A Hard X-Ray Photoemission Study, Phys. Rev. Lett. 104, 247201 (2010).
  44. T. Tomita, K. Kuga, Y. Uwatoko, and S. Nakatsuji, High pressure measurements of the resistivity of βYbAlB4, J. Phys.: Conf. Ser. 592, 012019 (2015).
  45. T. Tomita, K. Kuga, Y. Uwatoko, and S. Nakatsuji, Pressure-induced magnetic transition exceeding 30 K in the Yb-based heavy-fermion βYbAlB4, Phys. Rev. B 94, 245130 (2016).
  46. K. Kuga, G. Morrison, L. R. Treadwell, J. Y. Chan, and S. Nakatsuji, Magnetic order induced by Fe substitution of Al site in the heavy-fermion systems αYbAlB4 and βYbAlB4, Phys. Rev. B 86, 224413 (2012).
  47. K. Kuga, S. Suzuki, and S. Nakatsuji, Two magnetic phases in αYbAl1xFexB4, JPS Conf. Proc. 3, 012013 (2014).
  48. T. T. Terashima, Y. H. Matsuda, K. Kuga, S. Suzuki, Y. Matsumoto, S. Nakatsuji, A. Kondo, K. Kindo, N. Kawamura, M. Mizumaki, and T. Inami, X-ray absorption spectroscopy in the heavy Fermion compound αYbAlB4 at high magnetic fields, J. Phys. Soc. Jpn. 84, 114715 (2015).
  49. P. G. de Gennes, Sur les propriétés des métaux des terres rares, C. r. hebd. séances Acad. Sci. 247, 1836 (1958).
  50. T. Mori, H. Borrmann, S. Okada, K. Kudou, A. Leithe-Jasper, U. Burkhardt, and Y. Grin, Crystal structure, chemical bonding, electrical transport, and magnetic behavior of TmAlB4, Phys. Rev. B 76, 064404 (2007).
  51. T. Mori, K. Kudou, T. Shishido, and S. Okada, f-electron dependence of the physical properties of REAlB4; an AlB2-type analogous “tiling” compound, J. Appl. Phys. 109, 07E111 (2011).
  52. A. V. Goltsev and M. M. Abd-Elmeguid, Origin of the pressure dependence of the Kondo temperature in Ce- and Yb-based heavy-fermion compounds, J. Phys.: Condens. Matter 17, S813 (2005).
  53. J. Flouquet and H. Harima, Heavy fermion material: Ce versus Yb case, arXiv:0910.3110 (English); Kotai Butsuri (Japanese) 47, 2, 1 (2012).
  54. Y. Sakaguchi, S. Ikeda, K. Kuga, S. Suzuki, S. Nakatsuji, N. Hirao, Y. Ohishi, and H. Kobayashi, Pressure-induced local structural changes in heavy Fermion βYbAlB4, J. Phys. Soc. Jpn. 85, 023602 (2016).
  55. A. H. Nevidomskyy and P. Coleman, Layered Kondo Lattice Model for Quantum Critical βYbAlB4, Phys. Rev. Lett. 102, 077202 (2009).
  56. A. Ramires, P. Coleman, A. H. Nevidomskyy, and A. M. Tsvelik, βYbAlB4: A Critical Nodal Metal, Phys. Rev. Lett. 109, 176404 (2012).
  57. T. Nakano, K. Fujita, S. Murayama, K. Hoshi, M. Hedo, and Y. Uwatoko, Resistivity of Ce(Ru0.85Rh0.15)2Si2 under pressure, Physica B 329-333, 532 (2003).
  58. T. Kiss, F. Kanetaka, T. Yokoya, T. Shimojima, K. Kanai, S. Shin, Y. Onuki, T. Togashi, C. Zhang, C. T. Chen, and S. Watanabe, Photoemission Spectroscopic Evidence of Gap Anisotropy in an f-Electron Superconductor, Phys. Rev. Lett. 94, 057001 (2005).
  59. T. Shimojima, K. Okazaki, and S. Shin, Low-temperature and high-energy-resolution laser photoemission spectroscopy, J. Phys. Soc. Jpn. 84, 072001 (2015).
  60. D. Ehm, S. Hüfner, F. Reinert, J. Kroha, P. Wölfle, O. Stockert, C. Geibel, and H. v. Löhneysen, High-resolution photoemission study on low-TK Ce systems: Kondo resonance, crystal field structures, and their temperature dependence, Phys. Rev. B 76, 045117 (2007).
  61. See the Appendix pp5 for further information.
  62. C. Bareille, S. Suzuki, M. Nakayama, K. Kuroda, A. H. Nevidomskyy, Y. Matsumoto, S. Nakatsuji, T. Kondo, and S. Shin, Kondo hybridization and quantum criticality in βYbAlB4 by laser ARPES, Phys. Rev. B 97, 045112 (2018).
  63. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).
  64. A. Generalov, D. A. Sokolov, A. Chikina, Y. Kucherenko, V. N. Antonov, L. V. Bekenov, S. Patil, A. D. Huxley, J. W. Allen, K. Matho et al., Insight into the temperature dependent properties of the ferromagnetic Kondo lattice YbNiSn, Phys. Rev. B 95, 184433 (2017).
  65. T. Takabatake, F. Teshima, H. Fujii, S. Nishigori, T. Suzuki, T. Fujita, Y. Yamaguchi, J. Sakurai, and D. Jaccard, Formation of an anisotropic energy gap in the valence-fluctuating system of CeNiSn, Phys. Rev. B 41, 9607 (1990).
  66. S. K. Malik and D. T. Adroja, Evidence of pseudogap formation in a new valence-fluctuating compound: CeRhSb, Phys. Rev. B 43, 6277 (1991).
  67. H. Kumigashira, T. Sato, T. Yokoya, T. Takahashi, S. Yoshii, and M. Kasaya, Spectral Evidence for Pseudogap Formation in Kondo Insulators CeRhAs and CeRhSb, Phys. Rev. Lett. 82, 1943 (1999).
  68. Y. Muro, J. Kajino, K. Umeo, K. Nishimoto, R. Tamura, and T. Takabatake, Structural modification and metamagnetic anomaly in the ordered state of CeOs2Al10, Phys. Rev. B 81, 214401 (2010).
  69. T. Takesaka, K. Oe, R. Kobayashi, Y. Kawamura, T. Nishioka, H. Kato, M. Matsumura, and K. Kodama, Semiconducting behavior in CeFe2Al10 and CeRu2Al10 single crystals, J. Phys.: Conf. Ser. 200, 012201 (2010).
  70. S.-i. Kimura, T. Iizuka, H. Miyazaki, A. Irizawa, Y. Muro, and T. Takabatake, Electronic-Structure-Driven Magnetic Ordering in a Kondo Semiconductor CeOs2Al10, Phys. Rev. Lett. 106, 056404 (2011).
  71. T. Yoshida, T. Ohashi, and N. Kawakami, Effects of conduction electron correlation on heavy-Fermion systems, J. Phys. Soc. Jpn. 80, 064710 (2011).
  72. S. A. Werner, A. Arrott, and H. Kendrick, Temperature and magnetic-field dependence of the antiferromagnetism in pure chromium, Phys. Rev. 155, 528 (1967).
  73. S. Suzuki, T. Tomita, Y. Shimura, K. Kuga, Y. Matsumoto, and S. Nakatsuji, High magnetic transition temperature and semiconductor like transport properties of Mn-doped αYbAlB4, J. Phys.: Conf. Ser. 683, 012009 (2016).
  74. K.-H. Müller and V. N. Narozhnyi, Interaction of superconductivity and magnetism in borocarbide superconductors, Rep. Prog. Phys. 64, 943 (2001).
  75. C. L. Seaman, N. R. Dilley, M. C. de Andrade, J. Herrmann, M. B. Maple, and Z. Fisk, Superconductivity and magnetism in the Heusler alloys MPd2Pb (M=rare earth, Th, and U), Phys. Rev. B 53, 2651 (1996).
  76. P. G. Pagliuso, J. D. Thompson, M. F. Hundley, J. L. Sarrao, and Z. Fisk, Crystal structure and low-temperature magnetic properties of RmMIn3m+2 compounds (M=Rh or Ir; m=1,2; R=Sm or Gd), Phys. Rev. B 63, 054426 (2001).
  77. T. Ishiga, T. Wakita, R. Yoshida, H. Okazaki, K. Tsubota, M. Sunagawa, K. Uenaka, K. Okada, H. Kumigashira, M. Oshima, K. Yutani, Y. Muro, T. Takabatake, Y. Muraoka, and T. Yokoya, Electronic structures of CeM2Al10 (M = Fe, Ru, and Os) studied by soft x-ray resonant and high-resolution photoemission spectroscopiest, J. Phys. Soc. Jpn. 83, 094717 (2014).
  78. L. H. Tjeng, S.-J. Oh, E.-J. Cho, H.-J. Lin, C. T. Chen, G.-H. Gweon, J.-H. Park, J. W. Allen, T. Suzuki, M. S. Makivić, and D. L. Cox, Temperature dependence of the Kondo resonance in YbAl3, Phys. Rev. Lett. 71, 1419 (1993).
  79. Y. Takeda, M. Arita, M. Higashiguchi, K. Shimada, H. Namatame, M. Taniguchi, F. Iga, and T. Takabatake, High-resolution photoemission study of the temperature-dependent cf hybridization gap in the Kondo semiconductor YbB12, Phys. Rev. B 73, 033202 (2006).
  80. A. Shigemoto, J. Yamaguchi, A. Sekiyama, S. Imada, A. Yamasaki, A. Irizawa, T. Ukawa, T. Muro, F. Iga, T. Takabatake, and S. Suga, Observation of bulk electronic states of Kondo semiconductor YbB12 by high-resolution soft x-ray photoemission spectroscopy, J. Electron Spectrosc. 156-158, 472 (2007).
  81. T. Mutou and D. S. Hirashima, Gap formation in the symmetric periodic Anderson model in infinite dimensions, J. Phys. Soc. Jpn. 63, 4475 (1994).
  82. T. A. Costi and N. Manini, Low-energy scales and temperature-dependent photoemission of heavy Fermions, J. Low Temp. Phys. 126, 835 (2002).
  83. V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance, Science 280, 567 (1998).
  84. A. R. Schmidt, M. H. Hamidian, P. Wahl, F. Meier, A. V. Balatsky, J. D. Garrett, T. J. Williams, G. M. Luke, and J. C. Davis, Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2, Nature (London) 465, 570 (2010).
  85. S. Ernst, S. Kirchner, C. Krellner, C. Geibel, G. Zwicknagl, F. Steglich, and S. Wirth, Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2, Nature (London) 474, 362 (2011).
  86. P. Aynajian, E. H. da Silva Neto, A. Gyenis, R. E. Baumbach, J. D. Thompson, Z. Fisk, E. D. Bauer, and A. Yazdani, Visualizing heavy fermions emerging in a quantum critical Kondo lattice, Nature (London) 486, 201 (2012).
  87. A. C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).
  88. M. Maltseva, M. Dzero, and P. Coleman, Electron Cotunneling into a Kondo Lattice, Phys. Rev. Lett. 103, 206402 (2009).
  89. P. Wölfle, Y. Dubi, and A. V. Balatsky, Tunneling into Clean Heavy Fermion Compounds: Origin of the Fano Line Shape, Phys. Rev. Lett. 105, 246401 (2010).
  90. D. A. Tompsett, Z. P. Yin, G. G. Lonzarich, and W. E. Pickett, Role of crystal symmetry in the magnetic instabilities of βYbAlB4 and αYbAlB4, Phys. Rev. B 82, 235101 (2010).
  91. E. C. T. O'Farrell, D. A. Tompsett, S. E. Sebastian, N. Harrison, C. Capan, L. Balicas, K. Kuga, A. Matsuo, K. Kindo, M. Tokunaga, S. Nakatsuji, G. Csányi, Z. Fisk, and M. L. Sutherland, Role of f Electrons in the Fermi Surface of the Heavy Fermion Superconductor βYbAlB4, Phys. Rev. Lett. 102, 216402 (2009).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载