+

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Excitonic magnetism at the intersection of spin-orbit coupling and crystal-field splitting

Teresa Feldmaier1, Pascal Strobel1, Michael Schmid1,2, Philipp Hansmann3,4, and Maria Daghofer1,2

  • 1Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70550 Stuttgart, Germany
  • 2Center for Integrated Quantum Science and Technology, University of Stuttgart, 70550 Stuttgart, Germany
  • 3Max-Planck-Institute for Chemical Physics of Solids, 01187 Dresden, Germany
  • 4Department of Physics, University of Erlangen-Nuremberg, 91058 Erlangen, Germany

Phys. Rev. Research 2, 033201 – Published 5 August, 2020

DOI: https://doi.org/10.1103/PhysRevResearch.2.033201

Abstract

Excitonic magnetism involving superpositions of singlet and triplet states is expected to arise for two holes in strongly correlated and spin-orbit-coupled t2g orbitals. However, uncontested material examples for its realization are rare. We apply the variational cluster approach to the square lattice to investigate excitonic antiferromagnetism and the impact of a crystal field. We give a phase diagram depending on spin-orbit coupling and crystal field and find excitonic magnetism to survive in the presence of substantial crystal-field-induced orbital order. We address the specific example of Ca2RuO4 using ab initio modeling and conclude it to realize such excitonic magnetism despite its pronounced orbital polarization. We also reproduce magnetic excitations and show the maximum at momentum (0,0) to be related to the excitonic character of the magnetic order.

Physics Subject Headings (PhySH)

Article Text

References (46)

  1. D. Pesin and L. Balents, Mott physics and band topology in materials with strong spin-orbit interaction, Nat. Phys. 6, 376 (2010).
  2. A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006).
  3. G. Jackeli and G. Khaliullin, Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models, Phys. Rev. Lett. 102, 017205 (2009).
  4. J. Chaloupka, G. Jackeli, and G. Khaliullin, Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides A2IrO3, Phys. Rev. Lett. 105, 027204 (2010).
  5. S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P. Gegenwart, and R. Valenti, Models and materials for generalized Kitaev magnetism, J. Phys. Condens. Matter 29, 493002 (2017).
  6. H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler, Kitaev quantum spin liquid—Concept and materialization, Nat. Rev. Phys. 1, 264 (2019).
  7. G. Khaliullin, Orbital order and fluctuations in Mott insulators, Progr. Theor. Phys. Suppl. 160, 155 (2005).
  8. J. Bertinshaw, Y. Kim, G. Khaliullin, and B. Kim, Square lattice iridates, Annu. Rev. Condens. Matter Phys. 10, 315 (2019).
  9. Y. K. Kim, O. Krupin, J. D. Denlinger, A. Bostwick, E. Rotenberg, Q. Zhao, J. F. Mitchell, J. W. Allen, and B. J. Kim, Fermi arcs in a doped pseudospin-1/2 Heisenberg antiferromagnet, Science 345, 187 (2014).
  10. Y. K. Kim, N. H. Sung, J. D. Denlinger, and B. J. Kim, Observation of a d-wave gap in electron-doped Sr2 IrO4, Nat. Phys. 12, 37 (2015).
  11. D. Afanasiev, A. Gatilova, D. J. Groenendijk, B. A. Ivanov, M. Gibert, S. Gariglio, J. Mentink, J. Li, N. Dasari, M. Eckstein, T. Rasing, A. D. Caviglia, and A. V. Kimel, Ultrafast Spin Dynamics in Photodoped Spin-Orbit Mott Insulator Sr2IrO4, Phys. Rev. X 9, 021020 (2019).
  12. K. Pajskr, P. Novák, V. Pokorný, J. Kolorenč, R. Arita, and J. Kuneš, On the possibility of excitonic magnetism in Ir double perovskites, Phys. Rev. B 93, 035129 (2016).
  13. S. Fuchs, T. Dey, G. Aslan-Cansever, A. Maljuk, S. Wurmehl, B. Büchner, and V. Kataev, Unraveling the Nature of Magnetism of the 5d4 Double Perovskite Ba2YIrO6, Phys. Rev. Lett. 120, 237204 (2018).
  14. H. Gretarsson, H. Suzuki, H. Kim, K. Ueda, M. Krautloher, B. J. Kim, H. Yavaş, G. Khaliullin, and B. Keimer, Observation of spin-orbit excitations and Hund's multiplets in Ca2RuO4, Phys. Rev. B 100, 045123 (2019).
  15. G. Khaliullin, Excitonic Magnetism in Van Vleck-Type d4 Mott Insulators, Phys. Rev. Lett. 111, 197201 (2013).
  16. O. N. Meetei, W. S. Cole, M. Randeria, and N. Trivedi, Novel magnetic state in d4 Mott insulators, Phys. Rev. B 91, 054412 (2015).
  17. P. S. Anisimov, F. Aust, G. Khaliullin, and M. Daghofer, Nontrivial Triplon Topology and Triplon Liquid in Kitaev-Heisenberg-Type Excitonic Magnets, Phys. Rev. Lett. 122, 177201 (2019).
  18. J. Chaloupka and G. Khaliullin, Highly frustrated magnetism in relativistic d4 Mott insulators: Bosonic analog of the Kitaev honeycomb model, Phys. Rev. B 100, 224413 (2019).
  19. J. Chaloupka and G. Khaliullin, Doping-Induced Ferromagnetism and Possible Triplet Pairing in d4 Mott Insulators, Phys. Rev. Lett. 116, 017203 (2016).
  20. A. Jain, M. Krautloher, J. Porras, G. Ryu, D. Chen, D. Abernathy, J. Park, A. Ivanov, J. Chaloupka, G. Khaliullin, B. Keimer, and B. Kim, Nat. Phys. 13, 633 (2017).
  21. S.-M. Souliou, J. Chaloupka, G. Khaliullin, G. Ryu, A. Jain, B. J. Kim, M. Le Tacon, and B. Keimer, Raman Scattering from Higgs Mode Oscillations in the Two-Dimensional Antiferromagnet Ca2RuO4, Phys. Rev. Lett. 119, 067201 (2017).
  22. I. Zegkinoglou, J. Strempfer, C. S. Nelson, J. P. Hill, J. Chakhalian, C. Bernhard, J. C. Lang, G. Srajer, H. Fukazawa, S. Nakatsuji, Y. Maeno, and B. Keimer, Orbital Ordering Transition in Ca2RuO4 Observed with Resonant X-Ray Diffraction, Phys. Rev. Lett. 95, 136401 (2005).
  23. T. Mizokawa, L. H. Tjeng, G. A. Sawatzky, G. Ghiringhelli, O. Tjernberg, N. B. Brookes, H. Fukazawa, S. Nakatsuji, and Y. Maeno, Spin-Orbit Coupling in the Mott Insulator Ca2RuO4, Phys. Rev. Lett. 87, 077202 (2001).
  24. G. Zhang and E. Pavarini, Mott transition, spin-orbit effects, and magnetism in Ca2RuO4, Phys. Rev. B 95, 075145 (2017).
  25. D. Sutter, C. G. Fatuzzo, S. Moser, M. Kim, R. Fittipaldi, A. Vecchione, V. Granata, Y. Sassa, F. Cossalter, G. Gatti, M. Grioni, H. M. Rønnow, N. C. Plumb, C. E. Matt, M. Shi, M. Hoesch, T. K. Kim, T.-R. Chang, H.-T. Jeng, C. Jozwiak, A. Bostwick, E. Rotenberg, A. Georges, T. Neupert, and J. Chang, Hallmarks of Hunds coupling in the Mott insulator Ca2RuO4, Nat. Commun. 8, 15176 (2017).
  26. S. Kunkemöller, D. Khomskii, P. Steffens, A. Piovano, A. A. Nugroho, and M. Braden, Highly Anisotropic Magnon Dispersion in Ca2RuO4: Evidence for Strong Spin Orbit Coupling, Phys. Rev. Lett. 115, 247201 (2015).
  27. J. Bertinshaw, N. Gurung, P. Jorba, H. Liu, M. Schmid, D. T. Mantadakis, M. Daghofer, M. Krautloher, A. Jain, G. H. Ryu, O. Fabelo, P. Hansmann, G. Khaliullin, C. Pfleiderer, B. Keimer, and B. J. Kim, Unique Crystal Structure of Ca2RuO4 in the Current Stabilized Semimetallic State, Phys. Rev. Lett. 123, 137204 (2019).
  28. M. Cuoco, F. Forte, and C. Noce, Probing spin-orbital-lattice correlations in 4d4 systems, Phys. Rev. B 73, 094428 (2006).
  29. R. Triebl, G. J. Kraberger, J. Mravlje, and M. Aichhorn, Spin-orbit coupling and correlations in three-orbital systems, Phys. Rev. B 98, 205128 (2018).
  30. A. M. Oleś, Antiferromagnetism and correlation of electrons in transition metals, Phys. Rev. B 28, 327 (1983).
  31. M. Potthoff, M. Aichhorn, and C. Dahnken, Variational Cluster Approach to Correlated Electron Systems in Low Dimensions, Phys. Rev. Lett. 91, 206402 (2003).
  32. H. Watanabe, T. Shirakawa, and S. Yunoki, Microscopic Study of a Spin-Orbit-Induced Mott Insulator in Ir Oxides, Phys. Rev. Lett. 105, 216410 (2010).
  33. N. Kaushal, R. Soni, A. Nocera, G. Alvarez, and E. Dagotto, BCS-BEC crossover in a (t2g)4 excitonic magnet, Phys. Rev. B 101, 245147 (2020).
  34. N. Kaushal, J. Herbrych, A. Nocera, G. Alvarez, A. Moreo, F. A. Reboredo, and E. Dagotto, Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension, Phys. Rev. B 96, 155111 (2017).
  35. M. Balzer and M. Potthoff, Variational cluster approach to ferromagnetism in infinite dimensions and in one-dimensional chains, Phys. Rev. B 82, 174441 (2010).
  36. M. Potthoff, Self-energy-functional approach: Analytical results and the Mott-Hubbard transition, Eur. Phys. J. B 36, 335 (2003).
  37. M. Aichhorn and E. Arrigoni, Weak phase separation and the pseudogap in the electron-doped cuprates, Eurphys. Lett. 72, 117 (2005).
  38. T. Hotta and E. Dagotto, Prediction of Orbital Ordering in Single-Layered Ruthenates, Phys. Rev. Lett. 88, 017201 (2001).
  39. M. Cuoco, F. Forte, and C. Noce, Interplay of Coulomb interactions and c-axis octahedra distortions in single-layer ruthenates, Phys. Rev. B 74, 195124 (2006).
  40. T. Feldmaier, Excitonic Antiferromagnetism in Two-dimensional t2g4 Systems, Ph.D. thesis, University of Stuttgart (2019).
  41. G. Khaliullin and S. Okamoto, Quantum Behavior of Orbitals in Ferromagnetic Titanates: Novel Orderings and Excitations, Phys. Rev. Lett. 89, 167201 (2002).
  42. T. Sato, T. Shirakawa, and S. Yunoki, Spin-orbital entangled excitonic insulator with quadrupole order, Phys. Rev. B 99, 075117 (2019).
  43. txzNN=tyzNN are the two presumably most relevant hopping channels as they connect approximately half-filled orbitals.
  44. S. Brehm, E. Arrigoni, M. Aichhorn, and W. Hanke, Theory of two-particle excitations and the magnetic susceptibility in high-tccuprate superconductors, Eurphys. Lett. 89, 27005 (2010).
  45. Note that a finite cluster cannot show spontaneous symmetry breaking.
  46. A. Kłosiński, D. V. Efremov, J. van den Brink, and K. Wohlfeld, Photoemission spectrum of Ca2RuO4: Spin polaron physics in an S=1 antiferromagnet with anisotropies, Phys. Rev. B 101, 035115 (2020).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载