+

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Characterization of laser wakefield acceleration efficiency with octave spanning near-IR spectrum measurements

M. J. V. Streeter1,2,3,4,*, Y. Ma5,1,2, B. Kettle3, S. J. D. Dann1,2, E. Gerstmayr3, F. Albert6, N. Bourgeois7, S. Cipiccia8, J. M. Cole3 et al.

I. Gallardo González9, A. E. Hussein5,10, D. A. Jaroszynski11,1, K. Falk12,13,14, K. Krushelnick5, N. Lemos6, N. C. Lopes3,15, C. Lumsdon16, O. Lundh9, S. P. D. Mangles3, Z. Najmudin3, P. P. Rajeev7, R. Sandberg5, M. Shahzad11,1, M. Smid12, R. Spesyvtsev11,1, D. R. Symes7, G. Vieux11,1, and A. G. R. Thomas5,1,2,†

  • 1The Cockcroft Institute, Keckwick Lane, Daresbury, WA4 4AD, United Kingdom
  • 2Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
  • 3The John Adams Institute for Accelerator Science, Imperial College London, London, SW7 2AZ, United Kingdom
  • 4School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
  • 5Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
  • 6Lawrence Livermore National Laboratory (LLNL), P.O. Box 808, Livermore, California 94550, USA
  • 7Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
  • 8Diamond Light Source, Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United Kingdom
  • 9Department of Physics, Lund University, P.O. Box 118, S-22100, Lund, Sweden
  • 10Department of Electrical and Computer Engineering, University of Alberta, 9211 116 Street NW Edmonton, Alberta, T6G 1H9, Canada
  • 11SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
  • 12Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
  • 13Technische Universitat Dresden, 01062, Dresden, Germany
  • 14Institute of Physics of the ASCR, 182 21 Prague, Czech Republic
  • 15GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
  • 16York Plasma Institute, Department of Physics, University of York, York YO10 5DD, United Kingdom
  • *m.streeter@qub.ac.uk
  • agrt@umich.edu

Phys. Rev. Accel. Beams 25, 101302 – Published 31 October, 2022

DOI: https://doi.org/10.1103/PhysRevAccelBeams.25.101302

Abstract

We report on experimental measurements of energy transfer efficiencies in a GeV-class laser wakefield accelerator. Both the transfer of energy from the laser to the plasma wakefield and from the plasma to the accelerated electron beam was diagnosed by simultaneous measurement of the deceleration of laser photons and the acceleration of electrons as a function of plasma length. The extraction efficiency, which we define as the ratio of the energy gained by the electron beam to the energy lost by the self-guided laser mode, was maximized at 19±3% by tuning the plasma density and length. The additional information provided by the octave-spanning laser spectrum measurement allows for independent optimization of the plasma efficiency terms, which is required for the key goal of improving the overall efficiency of laser wakefield accelerators.

Physics Subject Headings (PhySH)

Article Text

Supplemental Material

References (38)

  1. W. P. Leemans, B. Nagler, A. J. Gonsalves, C. Tóth, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, GeV electron beams from a centimetre-scale accelerator, Nat. Phys. 2, 696 (2006).
  2. S. Kneip et al., Near-GeV Acceleration of Electrons by a Nonlinear Plasma Wave Driven by a Self-Guided Laser Pulse, Phys. Rev. Lett. 103, 035002 (2009).
  3. C. E. Clayton, J. E. Ralph, F. Albert, R. A. Fonseca, S. H. Glenzer, C. Joshi, W. Lu, K. A. Marsh, S. F. Martins, W. B. Mori, A. Pak, F. S. Tsung, B. B. Pollock, J. S. Ross, L. O. Silva, and D. H. Froula, Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection, Phys. Rev. Lett. 105, 105003 (2010).
  4. X. Wang et al., Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun. 4, 1988 (2013).
  5. W. P. Leemans, A. J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C. B. Schroeder, C. Toth, J. Daniels, D. E. Mittelberger, S. S. Bulanov, J.-L. Vay, C. G. R. Geddes, and E. Esarey, Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime, Phys. Rev. Lett. 113, 245002 (2014).
  6. A. J. Gonsalves et al., Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide, Phys. Rev. Lett. 122, 084801 (2019).
  7. M. Litos et al., High-efficiency acceleration of an electron beam in a plasma wakefield accelerator, Nature (London) 515, 92 (2014).
  8. E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81, 1229 (2009).
  9. S. Shiraishi, C. Benedetti, A. J. Gonsalves, K. Nakamura, B. H. Shaw, T. Sokollik, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, C. Tóth, E. Esarey, and W. P. Leemans, Laser red shifting based characterization of wakefield excitation in a laser-plasma accelerator, Phys. Plasmas 20, 063103 (2013).
  10. J. Vieira, S. F. Martins, F. Fiúza, C. K. Huang, W. B. Mori, S. P. D. Mangles, S. Kneip, S. Nagel, Z. Najmudin, and L. O. Silva, Influence of realistic parameters on state-of-the-art laser wakefield accelerator experiments, Plasma Phys. Controlled Fusion 54, 055010 (2012).
  11. T. Katsouleas, S. Wilks, P. Chen, J. M. Dawson, and J. J. Su, Beam loading efficiency in plasma accelerators, Part. Accel. 22, 81 (1987).
  12. S. Gordienko and A. Pukhov, Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons, Phys. Plasmas 12, 043109 (2005).
  13. W. Lu, M. Tzoufras, C. Joshi, F. Tsung, W. Mori, J. Vieira, R. Fonseca, and L. Silva, Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime, Phys. Rev. ST Accel. Beams 10, 061301 (2007).
  14. M. Tzoufras, W. Lu, F. S. Tsung, C. Huang, W. B. Mori, T. Katsouleas, J. Vieira, R. A. Fonseca, and L. O. Silva, Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration, Phys. Rev. Lett. 101, 145002 (2008).
  15. S. V. Bulanov, I. N. Inovenkov, V. I. Kirsanov, N. M. Naumova, and A. S. Sakharov, Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma, Phys. Fluids B 4, 1935 (1992).
  16. L. Oliveira e Silva and J. T. Mendonça, Kinetic theory of photon acceleration: Time-dependent spectral evolution of ultrashort laser pulses, Phys. Rev. E 57, 3423 (1998).
  17. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevAccelBeams.25.101302 for experimental setup, and additional details on the analysis methods and numerical simulations.
  18. A. E. Hussein et al., Laser-wakefield accelerators for high-resolution x-ray imaging of complex microstructures, Sci. Rep. 9, 3249 (2019).
  19. T. Matsuoka, C. McGuffey, P. G. Cummings, Y. Horovitz, F. Dollar, V. Chvykov, G. Kalintchenko, P. Rousseau, V. Yanovsky, S. S. Bulanov, A. G. R. Thomas, A. Maksimchuk, and K. Krushelnick, Stimulated Raman Side Scattering in Laser Wakefield Acceleration, Phys. Rev. Lett. 105, 034801 (2010).
  20. J. Schreiber, C. Bellei, S. P. D. Mangles, C. Kamperidis, S. Kneip, S. R. Nagel, C. A. J. Palmer, P. P. Rajeev, M. J. V. Streeter, and Z. Najmudin, Complete Temporal Characterization of Asymmetric Pulse Compression in a Laser Wakefield, Phys. Rev. Lett. 105, 235003 (2010).
  21. R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, and J.-L. Vay, A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm, Comput. Phys. Commun. 203, 66 (2016).
  22. S. P. D. Mangles, G. Genoud, M. S. Bloom, M. Burza, Z. Najmudin, A. Persson, K. Svensson, A. G. R. Thomas, and C.-G. Wahlström, Self-injection threshold in self-guided laser wakefield accelerators, Phys. Rev. ST Accel. Beams 15, 011302 (2012).
  23. T. P. Rowlands-Rees, C. Kamperidis, S. Kneip, A. J. Gonsalves, S. P. D. Mangles, J. G. Gallacher, E. Brunetti, T. Ibbotson, C. D. Murphy, P. S. Foster, M. J. V. Streeter, F. Budde, P. A. Norreys, D. A. Jaroszynski, K. Krushelnick, Z. Najmudin, and S. M. Hooker, Laser-Driven Acceleration of Electrons in a Partially Ionized Plasma Channel, Phys. Rev. Lett. 100, 105005 (2008).
  24. A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori, and C. Joshi, Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes, Phys. Rev. Lett. 104, 025003 (2010).
  25. C. McGuffey, A. G. R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F. J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V. Y. Bychenkov, I. V. Glazyrin, and a. V. Karpeev, Ionization Induced Trapping in a Laser Wakefield Accelerator, Phys. Rev. Lett. 104, 025004 (2010).
  26. M. Chen, E. Esarey, C. B. Schroeder, C. G. R. Geddes, and W. P. Leemans, Theory of ionization-induced trapping in laser-plasma accelerators, Phys. Plasmas 19, 033101 (2012).
  27. A. Pukhov and I. Kostyukov, Control of laser-wakefield acceleration by the plasma-density profile, Phys. Rev. E 77, 025401(R) (2008).
  28. E. Guillaume, A. Döpp, C. Thaury, K. Ta Phuoc, A. Lifschitz, G. Grittani, J. P. Goddet, A. Tafzi, S. W. Chou, L. Veisz, and V. Malka, Electron Rephasing in a Laser-Wakefield Accelerator, Phys. Rev. Lett. 115, 155002 (2015).
  29. Y. Ma, D. Seipt, S. J. D. Dann, M. J. V. Streeter, C. A. P. Palmer, L. Willingale, and A. G. R. Thomas, Angular streaking of betatron X-rays in a transverse density gradient laser-wakefield accelerator, Phys. Plasmas 25, 113105 (2018).
  30. J. D. Sadler, C. Arran, H. Li, and K. A. Flippo, Overcoming the dephasing limit in multiple-pulse laser wakefield acceleration, Phys. Rev. Accel. Beams 23, 021303 (2020).
  31. A. Debus, R. Pausch, A. Huebl, K. Steiniger, R. Widera, T. E. Cowan, U. Schramm, and M. Bussmann, Circumventing the Dephasing and Depletion Limits of Laser-Wakefield Acceleration, Phys. Rev. X 9, 031044 (2019).
  32. J. P. Palastro, J. L. Shaw, P. Franke, D. Ramsey, T. T. Simpson, and D. H. Froula, Dephasingless Laser Wakefield Acceleration, Phys. Rev. Lett. 124, 134802 (2020).
  33. C. Caizergues, S. Smartsev, V. Malka, and C. Thaury, Phase-locked laser-wakefield electron acceleration, Nat. Photonics 14, 475 (2020).
  34. W. Li, J. Liu, W. Wang, Z. Zhang, Q. Chen, Y. Tian, R. Qi, C. Yu, C. Wang, T. Tajima, R. Li, and Z. Xu, The phase-lock dynamics of the laser wakefield acceleration with an intensity-decaying laser pulse, Appl. Phys. Lett. 104, 093510 (2014).
  35. M. J. V. Streeter et al., Observation of Laser Power Amplification in a Self-Injecting Laser Wakefield Accelerator, Phys. Rev. Lett. 120, 254801 (2018).
  36. Z. Nie, C. H. Pai, J. Hua, C. Zhang, Y. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Su, S. Liu, Y. Ma, X. Ning, Y. He, W. Lu, H. H. Chu, J. Wang, W. B. Mori, and C. Joshi, Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure, Nat. Photonics 12, 489 (2018).
  37. Z. Nie, C.-H. Pai, J. Zhang, X. Ning, J. Hua, Y. He, Y. Wu, Q. Su, S. Liu, Y. Ma, Z. Cheng, W. Lu, H.-H. Chu, J. Wang, C. Zhang, W. B. Mori, and C. Joshi, Photon deceleration in plasma wakes generates single-cycle relativistic tunable infrared pulses, Nat. Commun. 11, 2787 (2020).
  38. M. J. V. Streeter, Characterisation of laser wakefield acceleration efficiency with octave spanning near-IR spectrum measurements, Zenodo, 10.5281/zenodo.7188057 (2022)

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载