+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immunization against Zika by entrapping live virus in a subcutaneous self-adjuvanting hydrogel

Subjects

Abstract

The threat of new viral outbreaks has heightened the need for ready-to-use vaccines that are safe and effective. Here we show that a subcutaneous vaccine consisting of live Zika virus electrostatically entrapped in a self-adjuvanting hydrogel recruited immune cells at the injection site and provided mice with effective protection against a lethal viral challenge. The hydrogel prevented the escape of the viral particles and upregulated pattern recognition receptors that activated innate antiviral immunity. The local inflammatory niche facilitated the engulfment of the virus by immune cells infiltrating the hydrogel, the processing and cross-presentation of antigens and the expansion of germinal centre B cells and induced robust antigen-specific adaptive responses and immune memory. Inflammatory immune niches entrapping live viruses may facilitate the rapid development of safe and efficacious vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the virus-entrapping hydrogel (Vax).
Fig. 2: Characterization of Vax.
Fig. 3: Vax stimulates local innate immune responses.
Fig. 4: Cell recruitment.
Fig. 5: Local activation and antigen presentation.
Fig. 6: Systemic immune responses after vaccination with Ad5-prM-E-loaded Vax.
Fig. 7: Lymph node immune activation.
Fig. 8: ZIKV-loaded Vax ensured a protective immune response against ZIKV infection.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. All data generated in this study, including source data for the figures, are available from figshare with the identifier https://doi.org/10.6084/m9.figshare.22126691.

References

  1. Plotkin, S. A. Vaccines: past, present and future. Nat. Med. 11, S5–S11 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Larocca, R. A. et al. Vaccine protection against Zika virus from Brazil. Nature 536, 474–478 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470–473 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Amanat, F. & Krammer, F. SARS-CoV-2 vaccines: status report. Immunity 52, 583–589 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gao, Q. et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369, 77 (2020).

    CAS  PubMed  Google Scholar 

  7. Rappuoli, R., Pizza, M., Del Giudice, G. & De Gregorio, E. Vaccines, new opportunities for a new society. Proc. Natl Acad. Sci. USA 111, 12288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Graham, B. S. Rapid COVID-19 vaccine development. Science 368, 945–946 (2020).

    CAS  PubMed  Google Scholar 

  9. Irvine, D. J., Swartz, M. A. & Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 12, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, J. et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat. Biotechnol. 33, 64–72 (2015).

    CAS  PubMed  Google Scholar 

  11. Wilson, D. S. et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18, 175–185 (2019).

    CAS  PubMed  Google Scholar 

  12. Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–U136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, X. et al. Biomineralization-based virus shell-engineering: towards neutralization escape and tropism expansion. Adv. Healthc. Mater. 1, 443–449 (2012).

    CAS  PubMed  Google Scholar 

  15. Wang, G. et al. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. Proc. Natl Acad. Sci. USA 110, 7619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, X. et al. Vaccine engineering with dual-functional mineral shell: a promising strategy to overcome preexisting immunity. Adv. Mater. 28, 694–700 (2016).

    CAS  PubMed  Google Scholar 

  17. Fries, C. N. et al. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 16, 385–398 (2020).

    Google Scholar 

  18. Wen, A. M. & Steinmetz, N. F. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem. Soc. Rev. 45, 4074–4126 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh, A. Eliciting B cell immunity against infectious diseases using nanovaccines. Nat. Nanotechnol. 16, 16–24 (2021).

    CAS  PubMed  Google Scholar 

  20. Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124 (2012).

    CAS  PubMed  Google Scholar 

  21. Dellacherie, M. O., Seo, B. R. & Mooney, D. J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. 4, 379–397 (2019).

    Google Scholar 

  22. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Thompson, M. R., Kaminski, J. J., Kurt-Jones, E. A. & Fitzgerald, K. A. Pattern recognition receptors and the innate immune response to viral infection. Viruses 3, 920–940 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gong, N. et al. Proton-driven transformable nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 15, 1053–1064 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Gal La Salle, G. et al. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259, 988 (1993).

    PubMed  Google Scholar 

  27. Ahmed, T. A. & Aljaeid, B. M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Dev. Ther. 10, 483–507 (2016).

    CAS  Google Scholar 

  28. Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019).

    CAS  PubMed  Google Scholar 

  29. Abbink, P. et al. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353, 1129 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lazear, H. M. et al. A mouse model of Zika virus pathogenesis. Cell Host Microbe 19, 720–730 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shan, C. et al. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med. 23, 763–767 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Newton, K. & Dixit, V. M. Signaling in innate immunity and inflammation. Cold Spring Harbor Perspect. Biol. 4, a006049 (2012).

    Google Scholar 

  33. Chang, S.-H., Lin, Y.-Y., Wu, G.-J., Huang, C.-H. & Tsai, G. J. Effect of chitosan molecular weight on anti-inflammatory activity in the RAW 264.7 macrophage model. Int. J. Biol. Macromol. 131, 167–175 (2019).

    CAS  PubMed  Google Scholar 

  34. Hamza, T., Barnett, J. B. & Li, B. Y. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int. J. Mol. Sci. 11, 789–806 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  36. Yoneyama, H. et al. Pivotal role of dendritic cell-derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J. Exp. Med. 195, 1257–1266 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo, Q. et al. Immunization with a novel human type 5 adenovirus-vectored vaccine expressing the premembrane and envelope proteins of zika virus provides consistent and sterilizing protection in multiple immunocompetent and immunocompromised animal models. J. Infect. Dis. 218, 365–377 (2018).

    CAS  PubMed  Google Scholar 

  38. Moodycliffe, A. M. et al. Cd40–Cd40 ligand interactions in vivo regulate migration of antigen-bearing dendritic cells from the skin to draining lymph nodes. J. Exp. Med. 191, 2011–2020 (1999).

    Google Scholar 

  39. Bennett, S. R. M. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    CAS  PubMed  Google Scholar 

  40. Shlomchik, M. J. & Weisel, F. Germinal centers. Immunol. Rev. 247, 5–10 (2012).

    PubMed  Google Scholar 

  41. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    CAS  PubMed  Google Scholar 

  43. Wang, C., Wang, J., Zhang, X., Yu, S. & Gu, Z. In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 10, eaan3682 (2018).

    PubMed  Google Scholar 

  44. Conde, J., Oliva, N., Atilano, M., Song, H. S. & Artzi, N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat. Mater. 15, 353–363 (2016).

    CAS  PubMed  Google Scholar 

  45. Hori, Y., Winans, A. M., Huang, C. C., Horrigan, E. M. & Irvine, D. J. Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29, 3671–3682 (2008).

    CAS  PubMed  Google Scholar 

  46. Li, X. M. et al. Immunostimulatory effect of chitosan and quaternary chitosan: a review of potential vaccine adjuvants. Carbohydr. Polym. 264, 118050 (2021).

    CAS  PubMed  Google Scholar 

  47. Noh, K. H. et al. GM-CSF-loaded chitosan hydrogel as an immunoadjuvant enhances antigen-specific immune responses with reduced toxicity. BMC Immunol. 15, 48 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Bueter, C. L. et al. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis. J. Biol. Chem. 286, 35447–35455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mora-Montes, H. M. et al. Recognition and blocking of innate immunity cells by candida albicans chitin. Infect. Immun. 79, 1961–1970 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dasgupta, P. & Keegan, A. D. Contribution of alternatively activated macrophages to allergic lung inflammation: a tale of mice and men. J. Innate Immun. 4, 478–488 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Goodridge, H. S., Wolf, A. J. & Underhill, D. M. Beta-glucan recognition by the innate immune system. Immunol. Rev. 230, 38–50 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Linehan, S. A., Martinez-Pomares, L. & Gordon, S. Macrophage lectins in host defence. Microbes Infect. 2, 279–288 (2000).

    CAS  PubMed  Google Scholar 

  53. Da Silva, C. A. et al. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J. Immunol. 182, 3573–3582 (2009).

    PubMed  Google Scholar 

  54. Jia, J., Liu, Q., Yang, T., Wang, L. & Ma, G. Facile fabrication of varisized calcium carbonate microspheres as vaccine adjuvants. J. Mat. Chem. B 5, 1611–1623 (2017).

    CAS  Google Scholar 

  55. Hawley, K. L. et al. CD14 cooperates with complement receptor 3 to mediate MyD88-independent phagocytosis of Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 109, 1228–1232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Song, H. et al. Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials 159, 119–129 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Xuan for the assistance with CLSM data analysis, and Q. Huang and J. Chen for their help with histological analysis. This work was supported by The National Natural Science Foundation of China (22037005 and 21625105) and National Science & Technology Major Project (2016ZX10004001).

Author information

Authors and Affiliations

Authors

Contributions

R.T. and X.W. initiated this study. X.W., R.T. and L.H. supervised and supported the research. H.H. performed most experiments including physicochemical characterization, cell experiments and animal experiments. Y.Z., F.T., X.W. and X.X. participated in performing the physicochemical characterization. J.L., Z.T., Y.M.Z., F.T., M.Z. and Y.C. participated in performing the animal experiments. H.H., X.W., Q.G. and S.W. analysed the data. The manuscript was written by H.H., X.W. and R.T. All authors provided critical feedback and helped shape the manuscript.

Corresponding authors

Correspondence to Lihua Hou, Xiaoyu Wang or Ruikang Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Michael Mitchell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Vax hydrogel restricted systemic infection in vivo.

IFNAR1−/− mice were injected with PBS, ZIKV, and Vax; n = 5 for each group at days 5–28, and n = 3 for each group at day 52. a, Viral RNA in the spleens, kidneys, liver, hearts, brains and testes of PBS-injected mice was determined by real-time quantitative RT-PCR. L.O.D., limit of detection. b, The weight of testes from IFNAR1−/− mice after injected with PBS, ZIKV, or Vax. c, Representative H&E staining of the testes from IFNAR1−/− mice after injected with PBS, ZIKV, and Vax. d, Survival curves of IFNAR1−/− mice after injection with PBS, ZIKV or ZIKV loaded Vax; n = 6 for each group. All the mice in the Vax injected group survived compared with the 50% survival rate of the WT ZIKV group. Statistical analyses were performed by using log-rank test.

Supplementary information

Supplementary Information

Supplementary methods, figures, tables, and references.

Reporting summary.

Peer review file.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, H., Wu, S., Lin, J. et al. Immunization against Zika by entrapping live virus in a subcutaneous self-adjuvanting hydrogel. Nat. Biomed. Eng 7, 928–942 (2023). https://doi.org/10.1038/s41551-023-01014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-023-01014-4

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载