Abstract
In this work, we present an evaluation of subleading effects in the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Using a recently derived optimized basis, we first study the matching of axial-vector contributions to short-distance constraints at the level of the scalar basis functions, finding that also the tails of the pseudoscalar poles and tensor mesons play a role. We then develop a matching strategy that allows for a combined evaluation of axial-vector and short-distance constraints, supplemented by an estimate of tensor-meson contributions based on simplified assumptions for their transition form factors. Uncertainties are primarily propagated from the axial-vector transition form factors and the variation of the matching scale, but we also consider estimates of the low-energy effect of hadronic states not explicitly included. In total, we obtain \( {\left.{a}_{\mu}^{\textrm{HLbL}}\right|}_{\textrm{subleading}} \) = 33.2(7.2) × 10−11, which in combination with previously evaluated contributions in the dispersive approach leads to \( {\left.{a}_{\mu}^{\textrm{HLbL}}\right|}_{\textrm{total}} \) = 101.9(7.9) × 10−11.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].
T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].
T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms 7 (2019) 28 [INSPIRE].
A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g – 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g – 2 and \( \alpha \left({m}_Z^2\right) \) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and \( \alpha \left({M}_Z^2\right) \): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].
M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \( \alpha \left({m}_Z^2\right) \), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, g – 2 of charged leptons, \( \alpha \left({M}_Z^2\right) \), and the hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].
B.-L. Hoid, M. Hoferichter and B. Kubis, Hadronic vacuum polarization and vector-meson resonance parameters from e+e− → π0γ, Eur. Phys. J. C 80 (2020) 988 [arXiv:2007.12696] [INSPIRE].
A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].
K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].
G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersive approach to hadronic light-by-light scattering, JHEP 09 (2014) 091 [arXiv:1402.7081] [INSPIRE].
G. Colangelo et al., Towards a data-driven analysis of hadronic light-by-light scattering, Phys. Lett. B 738 (2014) 6 [arXiv:1408.2517] [INSPIRE].
G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: theoretical foundations, JHEP 09 (2015) 074 [arXiv:1506.01386] [INSPIRE].
P. Masjuan and P. Sánchez-Puertas, Pseudoscalar-pole contribution to the (gμ – 2): a rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].
G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Rescattering effects in the hadronic-light-by-light contribution to the anomalous magnetic moment of the muon, Phys. Rev. Lett. 118 (2017) 232001 [arXiv:1701.06554] [INSPIRE].
G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347] [INSPIRE].
M. Hoferichter et al., Pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon, Phys. Rev. Lett. 121 (2018) 112002 [arXiv:1805.01471] [INSPIRE].
M. Hoferichter et al., Dispersion relation for hadronic light-by-light scattering: pion pole, JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].
A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019) 034520 [arXiv:1903.09471] [INSPIRE].
J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B 798 (2019) 134994 [arXiv:1908.03331] [INSPIRE].
G. Colangelo et al., Short-distance constraints on hadronic light-by-light scattering in the anomalous magnetic moment of the muon, Phys. Rev. D 101 (2020) 051501 [arXiv:1910.11881] [INSPIRE].
G. Colangelo et al., Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g – 2)μ with large-Nc Regge models, JHEP 03 (2020) 101 [arXiv:1910.13432] [INSPIRE].
T. Blum et al., Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD, Phys. Rev. Lett. 124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].
G. Colangelo et al., Remarks on higher-order hadronic corrections to the muon g – 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].
G. Colangelo et al., Prospects for precise predictions of aμ in the Standard Model, arXiv:2203.15810 [INSPIRE].
A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic Vacuum Polarization: (g – 2)μ versus Global Electroweak Fits, Phys. Rev. Lett. 125 (2020) 091801 [arXiv:2003.04886] [INSPIRE].
A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g – 2 and ∆α connection, Phys. Rev. D 102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].
B. Malaescu and M. Schott, Impact of correlations between aμ and αQED on the EW fit, Eur. Phys. J. C 81 (2021) 46 [arXiv:2008.08107] [INSPIRE].
G. Colangelo, M. Hoferichter and P. Stoffer, Constraints on the two-pion contribution to hadronic vacuum polarization, Phys. Lett. B 814 (2021) 136073 [arXiv:2010.07943] [INSPIRE].
D. Stamen et al., Kaon electromagnetic form factors in dispersion theory, Eur. Phys. J. C 82 (2022) 432 [arXiv:2202.11106] [INSPIRE].
G. Colangelo et al., Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization, Phys. Lett. B 833 (2022) 137313 [arXiv:2205.12963] [INSPIRE].
G. Colangelo, M. Hoferichter, B. Kubis and P. Stoffer, Isospin-breaking effects in the two-pion contribution to hadronic vacuum polarization, JHEP 10 (2022) 032 [arXiv:2208.08993] [INSPIRE].
M. Hoferichter et al., Phenomenological Estimate of Isospin Breaking in Hadronic Vacuum Polarization, Phys. Rev. Lett. 131 (2023) 161905 [arXiv:2307.02532] [INSPIRE].
M. Hoferichter, B.-L. Hoid, B. Kubis and D. Schuh, Isospin-breaking effects in the three-pion contribution to hadronic vacuum polarization, JHEP 08 (2023) 208 [arXiv:2307.02546] [INSPIRE].
P. Stoffer, G. Colangelo and M. Hoferichter, Puzzles in the hadronic contributions to the muon anomalous magnetic moment, 2023 JINST 18 C10021 [arXiv:2308.04217] [INSPIRE].
M. Davier et al., Tensions in e+e− → π+π−(γ) measurements: the new landscape of data-driven hadronic vacuum polarization predictions for the muon g – 2, Eur. Phys. J. C 84 (2024) 721 [arXiv:2312.02053] [INSPIRE].
CMD-3 collaboration, Measurement of the e+e− → π+π− cross section from threshold to 1.2 GeV with the CMD-3 detector, Phys. Rev. D 109 (2024) 112002 [arXiv:2302.08834] [INSPIRE].
CMD-3 collaboration, Measurement of the Pion Form Factor with CMD-3 Detector and its Implication to the Hadronic Contribution to Muon (g – 2), Phys. Rev. Lett. 132 (2024) 231903 [arXiv:2309.12910] [INSPIRE].
T.P. Leplumey and P. Stoffer, Dispersive analysis of the pion vector form factor without zeros, arXiv:2501.09643 [INSPIRE].
F. Campanario et al., Standard model radiative corrections in the pion form factor measurements do not explain the aμ anomaly, Phys. Rev. D 100 (2019) 076004 [arXiv:1903.10197] [INSPIRE].
F. Ignatov and R.N. Lee, Charge asymmetry in e+e− → π+π− process, Phys. Lett. B 833 (2022) 137283 [arXiv:2204.12235] [INSPIRE].
G. Colangelo, M. Hoferichter, J. Monnard and J. Ruiz de Elvira, Radiative corrections to the forward-backward asymmetry in e+e− → π+π−, JHEP 08 (2022) 295 [Erratum ibid. 09 (2024) 177] [arXiv:2207.03495] [INSPIRE].
J. Monnard, Radiative corrections for the two-pion contribution to the hadronic vacuum polarization contribution to the muon g – 2, Ph.D. thesis, Bern University, Switzerland (2021) [INSPIRE].
G. Abbiendi et al., Mini-Proceedings of the STRONG2020 Virtual Workshop on “Space-like and Time-like determination of the Hadronic Leading Order contribution to the Muon g – 2”, arXiv:2201.12102 [INSPIRE].
BaBar collaboration, Measurement of additional radiation in the initial-state-radiation processes e+e− → μ+μ−γ and e+e− → π+π−γ at BABAR, Phys. Rev. D 108 (2023) L111103 [arXiv:2308.05233] [INSPIRE].
R. Aliberti et al., Radiative corrections and Monte Carlo tools for low-energy hadronic cross sections in e+e− collisions, arXiv:2410.22882 [INSPIRE].
S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].
M. Cè et al., Window observable for the hadronic vacuum polarization contribution to the muon g − 2 from lattice QCD, Phys. Rev. D 106 (2022) 114502 [arXiv:2206.06582] [INSPIRE].
Extended Twisted Mass collaboration, Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions, Phys. Rev. D 107 (2023) 074506 [arXiv:2206.15084] [INSPIRE].
Fermilab Lattice et al. collaborations, Light-quark connected intermediate-window contributions to the muon g – 2 hadronic vacuum polarization from lattice QCD, Phys. Rev. D 107 (2023) 114514 [arXiv:2301.08274] [INSPIRE].
RBC and UKQCD collaborations, Update of Euclidean windows of the hadronic vacuum polarization, Phys. Rev. D 108 (2023) 054507 [arXiv:2301.08696] [INSPIRE].
A. Boccaletti et al., High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly, arXiv:2407.10913 [INSPIRE].
RBC and UKQCD collaborations, The long-distance window of the hadronic vacuum polarization for the muon g − 2, arXiv:2410.20590 [INSPIRE].
D. Djukanovic et al., The hadronic vacuum polarization contribution to the muon g – 2 at long distances, arXiv:2411.07969 [INSPIRE].
A. Bazavov et al., Hadronic vacuum polarization for the muon g – 2 from lattice QCD: Long-distance and full light-quark connected contribution, arXiv:2412.18491 [INSPIRE].
Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm, Phys. Rev. Lett. 131 (2023) 161802 [arXiv:2308.06230] [INSPIRE].
Muon g-2 collaboration, Detailed report on the measurement of the positive muon anomalous magnetic moment to 0.20 ppm, Phys. Rev. D 110 (2024) 032009 [arXiv:2402.15410] [INSPIRE].
Muon g-2 collaboration, Muon (g − 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].
V. Pauk and M. Vanderhaeghen, Single meson contributions to the muon‘s anomalous magnetic moment, Eur. Phys. J. C 74 (2014) 3008 [arXiv:1401.0832] [INSPIRE].
I. Danilkin and M. Vanderhaeghen, Light-by-light scattering sum rules in light of new data, Phys. Rev. D 95 (2017) 014019 [arXiv:1611.04646] [INSPIRE].
F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, Springer, Cham (2017) [https://doi.org/10.1007/978-3-319-63577-4] [INSPIRE].
M. Knecht, S. Narison, A. Rabemananjara and D. Rabetiarivony, Scalar meson contributions to a μ from hadronic light-by-light scattering, Phys. Lett. B 787 (2018) 111 [arXiv:1808.03848] [INSPIRE].
G. Eichmann, C.S. Fischer and R. Williams, Kaon-box contribution to the anomalous magnetic moment of the muon, Phys. Rev. D 101 (2020) 054015 [arXiv:1910.06795] [INSPIRE].
P. Roig and P. Sánchez-Puertas, Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment, Phys. Rev. D 101 (2020) 074019 [arXiv:1910.02881] [INSPIRE].
E.-H. Chao et al., Hadronic light-by-light contribution to (g – 2)μ from lattice QCD: a complete calculation, Eur. Phys. J. C 81 (2021) 651 [arXiv:2104.02632] [INSPIRE].
E.-H. Chao et al., The charm-quark contribution to light-by-light scattering in the muon (g – 2) from lattice QCD, Eur. Phys. J. C 82 (2022) 664 [arXiv:2204.08844] [INSPIRE].
RBC and UKQCD collaborations, Hadronic light-by-light contribution to the muon anomaly from lattice QCD with infinite volume QED at physical pion mass, Phys. Rev. D 111 (2025) 014501 [arXiv:2304.04423] [INSPIRE].
Z. Fodor et al., Hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon at the physical pion mass, arXiv:2411.11719 [INSPIRE].
M. Hoferichter, G. Colangelo, M. Procura and P. Stoffer, Virtual photon-photon scattering, Int. J. Mod. Phys. Conf. Ser. 35 (2014) 1460400 [arXiv:1309.6877] [INSPIRE].
S.P. Schneider, B. Kubis and F. Niecknig, The ω → π0γ∗ and ϕ → π0γ∗ transition form factors in dispersion theory, Phys. Rev. D 86 (2012) 054013 [arXiv:1206.3098] [INSPIRE].
M. Hoferichter, B. Kubis and D. Sakkas, Extracting the chiral anomaly from γπ → ππ, Phys. Rev. D 86 (2012) 116009 [arXiv:1210.6793] [INSPIRE].
M. Hoferichter et al., Dispersive analysis of the pion transition form factor, Eur. Phys. J. C 74 (2014) 3180 [arXiv:1410.4691] [INSPIRE].
M. Hoferichter, B.-L. Hoid, B. Kubis and J. Lüdtke, Improved Standard-Model prediction for π0 → e+e−, Phys. Rev. Lett. 128 (2022) 172004 [arXiv:2105.04563] [INSPIRE].
F. Stollenwerk et al., Model-independent approach to η → π+π−γ and η′ → π+π−γ, Phys. Lett. B 707 (2012) 184 [arXiv:1108.2419] [INSPIRE].
C. Hanhart et al., Dispersive analysis for η → γγ∗, Eur. Phys. J. C 73 (2013) 2668 [Erratum ibid. 75 (2015) 242] [arXiv:1307.5654] [INSPIRE].
B. Kubis and J. Plenter, Anomalous decay and scattering processes of the η meson, Eur. Phys. J. C 75 (2015) 283 [arXiv:1504.02588] [INSPIRE].
S. Holz et al., Towards an improved understanding of η → γ∗γ∗, Eur. Phys. J. C 81 (2021) 1002 [arXiv:1509.02194] [INSPIRE].
S. Holz, C. Hanhart, M. Hoferichter and B. Kubis, A dispersive analysis of η′ → π+π−γ and η′ → ℓ+ℓ−γ, Eur. Phys. J. C 82 (2022) 434 [Addendum ibid. 82 (2022) 1159] [arXiv:2202.05846] [INSPIRE].
S. Holz, The Quest for the η and η′ Transition Form Factors:A Stroll on the Precision Frontier, Ph.D. thesis, University of Bonn, Germany (2022), https://nbn-resolving.org/urn:nbn:de:hbz:5-67976.
S. Holz, M. Hoferichter, B.-L. Hoid and B. Kubis, A precision evaluation of the η- and η′-pole contributions to hadronic light-by-light scattering in the anomalous magnetic moment of the muon, arXiv:2411.08098 [INSPIRE].
S. Holz, M. Hoferichter, B.-L. Hoid and B. Kubis, Dispersion relation for hadronic light-by-light scattering: η and η′ poles, arXiv:2412.16281 [INSPIRE].
I. Danilkin, M. Hoferichter and P. Stoffer, A dispersive estimate of scalar contributions to hadronic light-by-light scattering, Phys. Lett. B 820 (2021) 136502 [arXiv:2105.01666] [INSPIRE].
O. Deineka, I. Danilkin and M. Vanderhaeghen, Dispersive estimate of the a0(980) contribution to (g − 2)μ, Phys. Rev. D 111 (2025) 034009 [arXiv:2410.12894] [INSPIRE].
M. Hoferichter and P. Stoffer, Asymptotic behavior of meson transition form factors, JHEP 05 (2020) 159 [arXiv:2004.06127] [INSPIRE].
M. Zanke, M. Hoferichter and B. Kubis, On the transition form factors of the axial-vector resonance f1(1285) and its decay into e+e−, JHEP 07 (2021) 106 [arXiv:2103.09829] [INSPIRE].
M. Hoferichter, B. Kubis and M. Zanke, Axial-vector transition form factors and e+e− → f1π+π−, JHEP 08 (2023) 209 [arXiv:2307.14413] [INSPIRE].
J. Lüdtke, M. Procura and P. Stoffer, Dispersion relations for the hadronic VVA correlator, arXiv:2410.11946 [INSPIRE].
M. Hoferichter, P. Stoffer and M. Zillinger, An optimized basis for hadronic light-by-light scattering, JHEP 04 (2024) 092 [arXiv:2402.14060] [INSPIRE].
J. Lüdtke, M. Procura and P. Stoffer, Dispersion relations for hadronic light-by-light scattering in triangle kinematics, JHEP 04 (2023) 125 [arXiv:2302.12264] [INSPIRE].
M. Hoferichter, P. Stoffer and M. Zillinger, Complete Dispersive Evaluation of the Hadronic Light-by-Light Contribution to Muon g – 2, Phys. Rev. Lett. 134 (2025) 061902 [arXiv:2412.00190] [INSPIRE].
J. Bijnens, N. Hermansson-Truedsson, L. Laub and A. Rodríguez-Sánchez, Short-distance HLbL contributions to the muon anomalous magnetic moment beyond perturbation theory, JHEP 10 (2020) 203 [arXiv:2008.13487] [INSPIRE].
J. Bijnens, N. Hermansson-Truedsson, L. Laub and A. Rodríguez-Sánchez, The two-loop perturbative correction to the (g – 2)μ HLbL at short distances, JHEP 04 (2021) 240 [arXiv:2101.09169] [INSPIRE].
J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Constraints on the hadronic light-by-light in the Melnikov-Vainshtein regime, JHEP 02 (2023) 167 [arXiv:2211.17183] [INSPIRE].
J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Constraints on the hadronic light-by-light tensor in corner kinematics for the muon g − 2, arXiv:2411.09578 [INSPIRE].
M. Knecht, On some short-distance properties of the fourth-rank hadronic vacuum polarization tensor and the anomalous magnetic moment of the muon, JHEP 08 (2020) 056 [arXiv:2005.09929] [INSPIRE].
P. Masjuan, P. Roig and P. Sánchez-Puertas, The interplay of transverse degrees of freedom and axial-vector mesons with short-distance constraints in g – 2, J. Phys. G 49 (2022) 015002 [arXiv:2005.11761] [INSPIRE].
J. Lüdtke and M. Procura, Effects of longitudinal short-distance constraints on the hadronic light-by-light contribution to the muon g – 2, Eur. Phys. J. C 80 (2020) 1108 [arXiv:2006.00007] [INSPIRE].
G. Colangelo et al., Short-distance constraints for the longitudinal component of the hadronic light-by-light amplitude: an update, Eur. Phys. J. C 81 (2021) 702 [arXiv:2106.13222] [INSPIRE].
J. Leutgeb and A. Rebhan, Axial vector transition form factors in holographic QCD and their contribution to the anomalous magnetic moment of the muon, Phys. Rev. D 101 (2020) 114015 [arXiv:1912.01596] [INSPIRE].
L. Cappiello et al., Axial-vector and pseudoscalar mesons in the hadronic light-by-light contribution to the muon (g – 2), Phys. Rev. D 102 (2020) 016009 [arXiv:1912.02779] [INSPIRE].
J. Leutgeb and A. Rebhan, Hadronic light-by-light contribution to the muon g – 2 from holographic QCD with massive pions, Phys. Rev. D 104 (2021) 094017 [arXiv:2108.12345] [INSPIRE].
J. Leutgeb, J. Mager and A. Rebhan, Hadronic light-by-light contribution to the muon g – 2 from holographic QCD with solved U(1)A problem, Phys. Rev. D 107 (2023) 054021 [arXiv:2211.16562] [INSPIRE].
P. Colangelo, F. Giannuzzi and S. Nicotri, Hadronic light-by-light scattering contributions to (g – 2)μ from axial-vector and tensor mesons in the holographic soft-wall model, Phys. Rev. D 109 (2024) 094036 [arXiv:2402.07579] [INSPIRE].
J. Leutgeb, J. Mager and A. Rebhan, Superconnections in AdS/QCD and the hadronic light-by-light contribution to the muon g − 2, arXiv:2411.10432 [INSPIRE].
G. Eichmann, C.S. Fischer, T. Haeuser and O. Regenfelder, Axial-vector and scalar contributions to hadronic light-by-light scattering, arXiv:2411.05652 [INSPIRE].
G.A. Schuler, F.A. Berends and R. van Gulik, Meson photon transition form-factors and resonance cross-sections in e+e− collisions, Nucl. Phys. B 523 (1998) 423 [hep-ph/9710462] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 110 (2024) 030001 [INSPIRE].
R. García-Martín and B. Moussallam, MO analysis of the high statistics Belle results on γγ → π+π−, π0π0 with chiral constraints, Eur. Phys. J. C 70 (2010) 155 [arXiv:1006.5373] [INSPIRE].
M. Hoferichter, D.R. Phillips and C. Schat, Roy-Steiner equations for γγ → ππ, Eur. Phys. J. C 71 (2011) 1743 [arXiv:1106.4147] [INSPIRE].
B. Moussallam, Unified dispersive approach to real and virtual photon-photon scattering at low energy, Eur. Phys. J. C 73 (2013) 2539 [arXiv:1305.3143] [INSPIRE].
I. Danilkin and M. Vanderhaeghen, Dispersive analysis of the γγ∗ → ππ process, Phys. Lett. B 789 (2019) 366 [arXiv:1810.03669] [INSPIRE].
M. Hoferichter and P. Stoffer, Dispersion relations for γ∗γ∗ → ππ: helicity amplitudes, subtractions, and anomalous thresholds, JHEP 07 (2019) 073 [arXiv:1905.13198] [INSPIRE].
I. Danilkin, O. Deineka and M. Vanderhaeghen, Dispersive analysis of the γ∗γ∗ → ππ process, Phys. Rev. D 101 (2020) 054008 [arXiv:1909.04158] [INSPIRE].
J. Lu and B. Moussallam, The πη interaction and a0 resonances in photon-photon scattering, Eur. Phys. J. C 80 (2020) 436 [arXiv:2002.04441] [INSPIRE].
H. Schäfer, M. Zanke, Y. Korte and B. Kubis, The semileptonic decays η(′) → π0ℓ+ℓ− and η′ → ηℓ+ℓ− in the standard model, Phys. Rev. D 108 (2023) 074025 [arXiv:2307.10357] [INSPIRE].
L3 collaboration, f1(1285) formation in two photon collisions at LEP, Phys. Lett. B 526 (2002) 269 [hep-ex/0110073] [INSPIRE].
L3 collaboration, Study of resonance formation in the mass region 1400-MeV to 1500-MeV through the reaction \( \gamma \gamma \to {K}_S^0{K}^{\pm }{\pi}^{\mp } \), JHEP 03 (2007) 018 [INSPIRE].
BaBar collaboration, The e+e− → 2(π+π−)π0, 2(π+π−)η, K+K−π+π−π0 and K+K−π+π−η Cross Sections Measured with Initial-State Radiation, Phys. Rev. D 76 (2007) 092005 [Erratum ibid. 77 (2008) 119902] [arXiv:0708.2461] [INSPIRE].
BaBar collaboration, Study of the reactions e+e− → K+K−π0π0π0, \( {e}^{+}{e}^{-}\to {K}_S^0{K}^{\pm }{\pi}^{\mp }{\pi}^0{\pi}^0 \), and \( {e}^{+}{e}^{-}\to {K}_S^0{K}^{\pm }{\pi}^{\mp }{\pi}^{+}{\pi}^{-} \) at center-of-mass energies from threshold to 4.5 GeV using initial-state radiation, Phys. Rev. D 107 (2023) 072001 [arXiv:2207.10340] [INSPIRE].
K.-C. Yang, Light-cone distribution amplitudes of axial-vector mesons, Nucl. Phys. B 776 (2007) 187 [arXiv:0705.0692] [INSPIRE].
F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys. Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].
K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
A. Vainshtein, Perturbative and nonperturbative renormalization of anomalous quark triangles, Phys. Lett. B 569 (2003) 187 [hep-ph/0212231] [INSPIRE].
M. Knecht, S. Peris, M. Perrottet and E. de Rafael, New nonrenormalization theorems for anomalous three point functions, JHEP 03 (2004) 035 [hep-ph/0311100] [INSPIRE].
C.F. Redmer, Experimental input to the hadronic corrections of the muon g – 2, Nuovo Cim. C 47 (2024) 247 [INSPIRE].
BESIII collaboration, Future Physics Programme of BESIII, Chin. Phys. C 44 (2020) 040001 [arXiv:1912.05983] [INSPIRE].
Belle-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].
M. Adam, The Hadronic Light-By-Light Contribution to the Muon g – 2 in Triangle Kinematics at Short Distances, MSc Thesis, Universität Wien, Austria (2023).
S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].
J.S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].
G.S. Bali et al., Magnetic susceptibility of QCD at zero and at finite temperature from the lattice, Phys. Rev. D 86 (2012) 094512 [arXiv:1209.6015] [INSPIRE].
BMW collaboration, Lattice QCD at the physical point: light quark masses, Phys. Lett. B 701 (2011) 265 [arXiv:1011.2403] [INSPIRE].
RBC and UKQCD collaborations, Domain Wall QCD with Near-Physical Pions, Phys. Rev. D 87 (2013) 094514 [arXiv:1208.4412] [INSPIRE].
Fermilab Lattice et al. collaborations, Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD, Phys. Rev. D 98 (2018) 054517 [arXiv:1802.04248] [INSPIRE].
HPQCD collaboration, Determination of quark masses from nf = 4 lattice QCD and the RI-SMOM intermediate scheme, Phys. Rev. D 98 (2018) 014513 [arXiv:1805.06225] [INSPIRE].
ALPHA collaboration, Light quark masses in Nf = 2 + 1 lattice QCD with Wilson fermions, Eur. Phys. J. C 80 (2020) 169 [arXiv:1911.08025] [INSPIRE].
Extended Twisted Mass collaboration, Quark masses using twisted-mass fermion gauge ensembles, Phys. Rev. D 104 (2021) 074515 [arXiv:2104.13408] [INSPIRE].
Acknowledgments
We thank Gilberto Colangelo, Bastian Kubis, and Massimiliano Procura for decade-long collaboration on many aspects of the work presented here. We further thank Johan Bijnens, Nils Hermansson-Truedsson, Jan Lüdtke, Antonio Rodríguez-Sánchez, and Matthias Steinhauser for valuable discussions, and Johan Bijnens for sharing code for the αs corrections to the quark loop [96]. Financial support by the SNSF (Project Nos. PCEFP2_181117, PCEFP2_194272, and TMCG-2_213690) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2412.00178
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Hoferichter, M., Stoffer, P. & Zillinger, M. Dispersion relation for hadronic light-by-light scattering: subleading contributions. J. High Energ. Phys. 2025, 121 (2025). https://doi.org/10.1007/JHEP02(2025)121
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/JHEP02(2025)121