+
X
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Dispersion relation for hadronic light-by-light scattering: subleading contributions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 19 February 2025
  • Volume 2025, article number 121, (2025)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of High Energy Physics Aims and scope Submit manuscript
Dispersion relation for hadronic light-by-light scattering: subleading contributions
Download PDF
  • Martin Hoferichter  ORCID: orcid.org/0000-0003-1113-93771,
  • Peter Stoffer  ORCID: orcid.org/0000-0001-7966-26962,3 &
  • Maximilian Zillinger  ORCID: orcid.org/0009-0004-7088-75481 
  • 258 Accesses

  • 14 Citations

  • 9 Altmetric

  • 2 Mentions

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In this work, we present an evaluation of subleading effects in the hadronic light-by-light contribution to the anomalous magnetic moment of the muon. Using a recently derived optimized basis, we first study the matching of axial-vector contributions to short-distance constraints at the level of the scalar basis functions, finding that also the tails of the pseudoscalar poles and tensor mesons play a role. We then develop a matching strategy that allows for a combined evaluation of axial-vector and short-distance constraints, supplemented by an estimate of tensor-meson contributions based on simplified assumptions for their transition form factors. Uncertainties are primarily propagated from the axial-vector transition form factors and the variation of the matching scale, but we also consider estimates of the low-energy effect of hadronic states not explicitly included. In total, we obtain \( {\left.{a}_{\mu}^{\textrm{HLbL}}\right|}_{\textrm{subleading}} \) = 33.2(7.2) × 10−11, which in combination with previously evaluated contributions in the dispersive approach leads to \( {\left.{a}_{\mu}^{\textrm{HLbL}}\right|}_{\textrm{total}} \) = 101.9(7.9) × 10−11.

Article PDF

Download to read the full article text

Similar content being viewed by others

Axial-vector and scalar contributions to hadronic light-by-light scattering

Article Open access 22 April 2025

Effects of longitudinal short-distance constraints on the hadronic light-by-light contribution to the muon \(\mathbf {g-2}\)

Article Open access 02 December 2020

An optimized basis for hadronic light-by-light scattering

Article Open access 17 April 2024

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Angular momentum of light
  • Neutron Scattering
  • Nuclear Physics
  • Particle Physics
  • Polarization
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

    Article  ADS  Google Scholar 

  2. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].

    Article  ADS  Google Scholar 

  3. T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms 7 (2019) 28 [INSPIRE].

  4. A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].

  5. C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g – 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g – 2 and \( \alpha \left({m}_Z^2\right) \) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].

  7. A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and \( \alpha \left({M}_Z^2\right) \): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].

  8. G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to \( \alpha \left({m}_Z^2\right) \), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].

  11. A. Keshavarzi, D. Nomura and T. Teubner, g – 2 of charged leptons, \( \alpha \left({M}_Z^2\right) \), and the hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].

  12. B.-L. Hoid, M. Hoferichter and B. Kubis, Hadronic vacuum polarization and vector-meson resonance parameters from e+e− → π0γ, Eur. Phys. J. C 80 (2020) 988 [arXiv:2007.12696] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].

    Article  ADS  Google Scholar 

  14. K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].

  15. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersive approach to hadronic light-by-light scattering, JHEP 09 (2014) 091 [arXiv:1402.7081] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Colangelo et al., Towards a data-driven analysis of hadronic light-by-light scattering, Phys. Lett. B 738 (2014) 6 [arXiv:1408.2517] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: theoretical foundations, JHEP 09 (2015) 074 [arXiv:1506.01386] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  18. P. Masjuan and P. Sánchez-Puertas, Pseudoscalar-pole contribution to the (gμ – 2): a rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Rescattering effects in the hadronic-light-by-light contribution to the anomalous magnetic moment of the muon, Phys. Rev. Lett. 118 (2017) 232001 [arXiv:1701.06554] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Hoferichter et al., Pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon, Phys. Rev. Lett. 121 (2018) 112002 [arXiv:1805.01471] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Hoferichter et al., Dispersion relation for hadronic light-by-light scattering: pion pole, JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019) 034520 [arXiv:1903.09471] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B 798 (2019) 134994 [arXiv:1908.03331] [INSPIRE].

    Article  Google Scholar 

  25. G. Colangelo et al., Short-distance constraints on hadronic light-by-light scattering in the anomalous magnetic moment of the muon, Phys. Rev. D 101 (2020) 051501 [arXiv:1910.11881] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Colangelo et al., Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g – 2)μ with large-Nc Regge models, JHEP 03 (2020) 101 [arXiv:1910.13432] [INSPIRE].

    Article  ADS  Google Scholar 

  27. T. Blum et al., Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD, Phys. Rev. Lett. 124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Colangelo et al., Remarks on higher-order hadronic corrections to the muon g – 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Colangelo et al., Prospects for precise predictions of aμ in the Standard Model, arXiv:2203.15810 [INSPIRE].

  30. A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic Vacuum Polarization: (g – 2)μ versus Global Electroweak Fits, Phys. Rev. Lett. 125 (2020) 091801 [arXiv:2003.04886] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g – 2 and ∆α connection, Phys. Rev. D 102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].

    Article  ADS  Google Scholar 

  32. B. Malaescu and M. Schott, Impact of correlations between aμ and αQED on the EW fit, Eur. Phys. J. C 81 (2021) 46 [arXiv:2008.08107] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Colangelo, M. Hoferichter and P. Stoffer, Constraints on the two-pion contribution to hadronic vacuum polarization, Phys. Lett. B 814 (2021) 136073 [arXiv:2010.07943] [INSPIRE].

    Article  Google Scholar 

  34. D. Stamen et al., Kaon electromagnetic form factors in dispersion theory, Eur. Phys. J. C 82 (2022) 432 [arXiv:2202.11106] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Colangelo et al., Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization, Phys. Lett. B 833 (2022) 137313 [arXiv:2205.12963] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  36. G. Colangelo, M. Hoferichter, B. Kubis and P. Stoffer, Isospin-breaking effects in the two-pion contribution to hadronic vacuum polarization, JHEP 10 (2022) 032 [arXiv:2208.08993] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Hoferichter et al., Phenomenological Estimate of Isospin Breaking in Hadronic Vacuum Polarization, Phys. Rev. Lett. 131 (2023) 161905 [arXiv:2307.02532] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Hoferichter, B.-L. Hoid, B. Kubis and D. Schuh, Isospin-breaking effects in the three-pion contribution to hadronic vacuum polarization, JHEP 08 (2023) 208 [arXiv:2307.02546] [INSPIRE].

    Article  ADS  Google Scholar 

  39. P. Stoffer, G. Colangelo and M. Hoferichter, Puzzles in the hadronic contributions to the muon anomalous magnetic moment, 2023 JINST 18 C10021 [arXiv:2308.04217] [INSPIRE].

  40. M. Davier et al., Tensions in e+e− → π+π−(γ) measurements: the new landscape of data-driven hadronic vacuum polarization predictions for the muon g – 2, Eur. Phys. J. C 84 (2024) 721 [arXiv:2312.02053] [INSPIRE].

    Article  ADS  Google Scholar 

  41. CMD-3 collaboration, Measurement of the e+e− → π+π− cross section from threshold to 1.2 GeV with the CMD-3 detector, Phys. Rev. D 109 (2024) 112002 [arXiv:2302.08834] [INSPIRE].

  42. CMD-3 collaboration, Measurement of the Pion Form Factor with CMD-3 Detector and its Implication to the Hadronic Contribution to Muon (g – 2), Phys. Rev. Lett. 132 (2024) 231903 [arXiv:2309.12910] [INSPIRE].

  43. T.P. Leplumey and P. Stoffer, Dispersive analysis of the pion vector form factor without zeros, arXiv:2501.09643 [INSPIRE].

  44. F. Campanario et al., Standard model radiative corrections in the pion form factor measurements do not explain the aμ anomaly, Phys. Rev. D 100 (2019) 076004 [arXiv:1903.10197] [INSPIRE].

    Article  ADS  Google Scholar 

  45. F. Ignatov and R.N. Lee, Charge asymmetry in e+e− → π+π− process, Phys. Lett. B 833 (2022) 137283 [arXiv:2204.12235] [INSPIRE].

    Article  Google Scholar 

  46. G. Colangelo, M. Hoferichter, J. Monnard and J. Ruiz de Elvira, Radiative corrections to the forward-backward asymmetry in e+e− → π+π−, JHEP 08 (2022) 295 [Erratum ibid. 09 (2024) 177] [arXiv:2207.03495] [INSPIRE].

  47. J. Monnard, Radiative corrections for the two-pion contribution to the hadronic vacuum polarization contribution to the muon g – 2, Ph.D. thesis, Bern University, Switzerland (2021) [INSPIRE].

  48. G. Abbiendi et al., Mini-Proceedings of the STRONG2020 Virtual Workshop on “Space-like and Time-like determination of the Hadronic Leading Order contribution to the Muon g – 2”, arXiv:2201.12102 [INSPIRE].

  49. BaBar collaboration, Measurement of additional radiation in the initial-state-radiation processes e+e− → μ+μ−γ and e+e− → π+π−γ at BABAR, Phys. Rev. D 108 (2023) L111103 [arXiv:2308.05233] [INSPIRE].

  50. R. Aliberti et al., Radiative corrections and Monte Carlo tools for low-energy hadronic cross sections in e+e− collisions, arXiv:2410.22882 [INSPIRE].

  51. S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Cè et al., Window observable for the hadronic vacuum polarization contribution to the muon g − 2 from lattice QCD, Phys. Rev. D 106 (2022) 114502 [arXiv:2206.06582] [INSPIRE].

    Article  ADS  Google Scholar 

  53. Extended Twisted Mass collaboration, Lattice calculation of the short and intermediate time-distance hadronic vacuum polarization contributions to the muon magnetic moment using twisted-mass fermions, Phys. Rev. D 107 (2023) 074506 [arXiv:2206.15084] [INSPIRE].

  54. Fermilab Lattice et al. collaborations, Light-quark connected intermediate-window contributions to the muon g – 2 hadronic vacuum polarization from lattice QCD, Phys. Rev. D 107 (2023) 114514 [arXiv:2301.08274] [INSPIRE].

  55. RBC and UKQCD collaborations, Update of Euclidean windows of the hadronic vacuum polarization, Phys. Rev. D 108 (2023) 054507 [arXiv:2301.08696] [INSPIRE].

  56. A. Boccaletti et al., High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly, arXiv:2407.10913 [INSPIRE].

  57. RBC and UKQCD collaborations, The long-distance window of the hadronic vacuum polarization for the muon g − 2, arXiv:2410.20590 [INSPIRE].

  58. D. Djukanovic et al., The hadronic vacuum polarization contribution to the muon g – 2 at long distances, arXiv:2411.07969 [INSPIRE].

  59. A. Bazavov et al., Hadronic vacuum polarization for the muon g – 2 from lattice QCD: Long-distance and full light-quark connected contribution, arXiv:2412.18491 [INSPIRE].

  60. Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm, Phys. Rev. Lett. 131 (2023) 161802 [arXiv:2308.06230] [INSPIRE].

  61. Muon g-2 collaboration, Detailed report on the measurement of the positive muon anomalous magnetic moment to 0.20 ppm, Phys. Rev. D 110 (2024) 032009 [arXiv:2402.15410] [INSPIRE].

  62. Muon g-2 collaboration, Muon (g − 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].

  63. V. Pauk and M. Vanderhaeghen, Single meson contributions to the muon‘s anomalous magnetic moment, Eur. Phys. J. C 74 (2014) 3008 [arXiv:1401.0832] [INSPIRE].

    Article  ADS  Google Scholar 

  64. I. Danilkin and M. Vanderhaeghen, Light-by-light scattering sum rules in light of new data, Phys. Rev. D 95 (2017) 014019 [arXiv:1611.04646] [INSPIRE].

    Article  ADS  Google Scholar 

  65. F. Jegerlehner, The Anomalous Magnetic Moment of the Muon, Springer, Cham (2017) [https://doi.org/10.1007/978-3-319-63577-4] [INSPIRE].

  66. M. Knecht, S. Narison, A. Rabemananjara and D. Rabetiarivony, Scalar meson contributions to a μ from hadronic light-by-light scattering, Phys. Lett. B 787 (2018) 111 [arXiv:1808.03848] [INSPIRE].

    Article  ADS  Google Scholar 

  67. G. Eichmann, C.S. Fischer and R. Williams, Kaon-box contribution to the anomalous magnetic moment of the muon, Phys. Rev. D 101 (2020) 054015 [arXiv:1910.06795] [INSPIRE].

    Article  ADS  Google Scholar 

  68. P. Roig and P. Sánchez-Puertas, Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment, Phys. Rev. D 101 (2020) 074019 [arXiv:1910.02881] [INSPIRE].

    Article  ADS  Google Scholar 

  69. E.-H. Chao et al., Hadronic light-by-light contribution to (g – 2)μ from lattice QCD: a complete calculation, Eur. Phys. J. C 81 (2021) 651 [arXiv:2104.02632] [INSPIRE].

    Article  ADS  Google Scholar 

  70. E.-H. Chao et al., The charm-quark contribution to light-by-light scattering in the muon (g – 2) from lattice QCD, Eur. Phys. J. C 82 (2022) 664 [arXiv:2204.08844] [INSPIRE].

    Article  ADS  Google Scholar 

  71. RBC and UKQCD collaborations, Hadronic light-by-light contribution to the muon anomaly from lattice QCD with infinite volume QED at physical pion mass, Phys. Rev. D 111 (2025) 014501 [arXiv:2304.04423] [INSPIRE].

  72. Z. Fodor et al., Hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon at the physical pion mass, arXiv:2411.11719 [INSPIRE].

  73. M. Hoferichter, G. Colangelo, M. Procura and P. Stoffer, Virtual photon-photon scattering, Int. J. Mod. Phys. Conf. Ser. 35 (2014) 1460400 [arXiv:1309.6877] [INSPIRE].

    Article  Google Scholar 

  74. S.P. Schneider, B. Kubis and F. Niecknig, The ω → π0γ∗ and ϕ → π0γ∗ transition form factors in dispersion theory, Phys. Rev. D 86 (2012) 054013 [arXiv:1206.3098] [INSPIRE].

    Article  ADS  Google Scholar 

  75. M. Hoferichter, B. Kubis and D. Sakkas, Extracting the chiral anomaly from γπ → ππ, Phys. Rev. D 86 (2012) 116009 [arXiv:1210.6793] [INSPIRE].

    Article  ADS  Google Scholar 

  76. M. Hoferichter et al., Dispersive analysis of the pion transition form factor, Eur. Phys. J. C 74 (2014) 3180 [arXiv:1410.4691] [INSPIRE].

    Article  ADS  Google Scholar 

  77. M. Hoferichter, B.-L. Hoid, B. Kubis and J. Lüdtke, Improved Standard-Model prediction for π0 → e+e−, Phys. Rev. Lett. 128 (2022) 172004 [arXiv:2105.04563] [INSPIRE].

    Article  ADS  Google Scholar 

  78. F. Stollenwerk et al., Model-independent approach to η → π+π−γ and η′ → π+π−γ, Phys. Lett. B 707 (2012) 184 [arXiv:1108.2419] [INSPIRE].

    Article  ADS  Google Scholar 

  79. C. Hanhart et al., Dispersive analysis for η → γγ∗, Eur. Phys. J. C 73 (2013) 2668 [Erratum ibid. 75 (2015) 242] [arXiv:1307.5654] [INSPIRE].

  80. B. Kubis and J. Plenter, Anomalous decay and scattering processes of the η meson, Eur. Phys. J. C 75 (2015) 283 [arXiv:1504.02588] [INSPIRE].

    Article  ADS  Google Scholar 

  81. S. Holz et al., Towards an improved understanding of η → γ∗γ∗, Eur. Phys. J. C 81 (2021) 1002 [arXiv:1509.02194] [INSPIRE].

    Article  ADS  Google Scholar 

  82. S. Holz, C. Hanhart, M. Hoferichter and B. Kubis, A dispersive analysis of η′ → π+π−γ and η′ → ℓ+ℓ−γ, Eur. Phys. J. C 82 (2022) 434 [Addendum ibid. 82 (2022) 1159] [arXiv:2202.05846] [INSPIRE].

  83. S. Holz, The Quest for the η and η′ Transition Form Factors:A Stroll on the Precision Frontier, Ph.D. thesis, University of Bonn, Germany (2022), https://nbn-resolving.org/urn:nbn:de:hbz:5-67976.

  84. S. Holz, M. Hoferichter, B.-L. Hoid and B. Kubis, A precision evaluation of the η- and η′-pole contributions to hadronic light-by-light scattering in the anomalous magnetic moment of the muon, arXiv:2411.08098 [INSPIRE].

  85. S. Holz, M. Hoferichter, B.-L. Hoid and B. Kubis, Dispersion relation for hadronic light-by-light scattering: η and η′ poles, arXiv:2412.16281 [INSPIRE].

  86. I. Danilkin, M. Hoferichter and P. Stoffer, A dispersive estimate of scalar contributions to hadronic light-by-light scattering, Phys. Lett. B 820 (2021) 136502 [arXiv:2105.01666] [INSPIRE].

    Article  Google Scholar 

  87. O. Deineka, I. Danilkin and M. Vanderhaeghen, Dispersive estimate of the a0(980) contribution to (g − 2)μ, Phys. Rev. D 111 (2025) 034009 [arXiv:2410.12894] [INSPIRE].

    Article  ADS  Google Scholar 

  88. M. Hoferichter and P. Stoffer, Asymptotic behavior of meson transition form factors, JHEP 05 (2020) 159 [arXiv:2004.06127] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  89. M. Zanke, M. Hoferichter and B. Kubis, On the transition form factors of the axial-vector resonance f1(1285) and its decay into e+e−, JHEP 07 (2021) 106 [arXiv:2103.09829] [INSPIRE].

    Article  ADS  Google Scholar 

  90. M. Hoferichter, B. Kubis and M. Zanke, Axial-vector transition form factors and e+e− → f1π+π−, JHEP 08 (2023) 209 [arXiv:2307.14413] [INSPIRE].

    Article  ADS  Google Scholar 

  91. J. Lüdtke, M. Procura and P. Stoffer, Dispersion relations for the hadronic VVA correlator, arXiv:2410.11946 [INSPIRE].

  92. M. Hoferichter, P. Stoffer and M. Zillinger, An optimized basis for hadronic light-by-light scattering, JHEP 04 (2024) 092 [arXiv:2402.14060] [INSPIRE].

    Article  ADS  Google Scholar 

  93. J. Lüdtke, M. Procura and P. Stoffer, Dispersion relations for hadronic light-by-light scattering in triangle kinematics, JHEP 04 (2023) 125 [arXiv:2302.12264] [INSPIRE].

    Article  ADS  Google Scholar 

  94. M. Hoferichter, P. Stoffer and M. Zillinger, Complete Dispersive Evaluation of the Hadronic Light-by-Light Contribution to Muon g – 2, Phys. Rev. Lett. 134 (2025) 061902 [arXiv:2412.00190] [INSPIRE].

    Article  ADS  Google Scholar 

  95. J. Bijnens, N. Hermansson-Truedsson, L. Laub and A. Rodríguez-Sánchez, Short-distance HLbL contributions to the muon anomalous magnetic moment beyond perturbation theory, JHEP 10 (2020) 203 [arXiv:2008.13487] [INSPIRE].

    Article  ADS  Google Scholar 

  96. J. Bijnens, N. Hermansson-Truedsson, L. Laub and A. Rodríguez-Sánchez, The two-loop perturbative correction to the (g – 2)μ HLbL at short distances, JHEP 04 (2021) 240 [arXiv:2101.09169] [INSPIRE].

    Article  ADS  Google Scholar 

  97. J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Constraints on the hadronic light-by-light in the Melnikov-Vainshtein regime, JHEP 02 (2023) 167 [arXiv:2211.17183] [INSPIRE].

    Article  ADS  Google Scholar 

  98. J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Constraints on the hadronic light-by-light tensor in corner kinematics for the muon g − 2, arXiv:2411.09578 [INSPIRE].

  99. M. Knecht, On some short-distance properties of the fourth-rank hadronic vacuum polarization tensor and the anomalous magnetic moment of the muon, JHEP 08 (2020) 056 [arXiv:2005.09929] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  100. P. Masjuan, P. Roig and P. Sánchez-Puertas, The interplay of transverse degrees of freedom and axial-vector mesons with short-distance constraints in g – 2, J. Phys. G 49 (2022) 015002 [arXiv:2005.11761] [INSPIRE].

    Article  ADS  Google Scholar 

  101. J. Lüdtke and M. Procura, Effects of longitudinal short-distance constraints on the hadronic light-by-light contribution to the muon g – 2, Eur. Phys. J. C 80 (2020) 1108 [arXiv:2006.00007] [INSPIRE].

    Article  ADS  Google Scholar 

  102. G. Colangelo et al., Short-distance constraints for the longitudinal component of the hadronic light-by-light amplitude: an update, Eur. Phys. J. C 81 (2021) 702 [arXiv:2106.13222] [INSPIRE].

    Article  ADS  Google Scholar 

  103. J. Leutgeb and A. Rebhan, Axial vector transition form factors in holographic QCD and their contribution to the anomalous magnetic moment of the muon, Phys. Rev. D 101 (2020) 114015 [arXiv:1912.01596] [INSPIRE].

    Article  ADS  Google Scholar 

  104. L. Cappiello et al., Axial-vector and pseudoscalar mesons in the hadronic light-by-light contribution to the muon (g – 2), Phys. Rev. D 102 (2020) 016009 [arXiv:1912.02779] [INSPIRE].

    Article  ADS  Google Scholar 

  105. J. Leutgeb and A. Rebhan, Hadronic light-by-light contribution to the muon g – 2 from holographic QCD with massive pions, Phys. Rev. D 104 (2021) 094017 [arXiv:2108.12345] [INSPIRE].

    Article  ADS  Google Scholar 

  106. J. Leutgeb, J. Mager and A. Rebhan, Hadronic light-by-light contribution to the muon g – 2 from holographic QCD with solved U(1)A problem, Phys. Rev. D 107 (2023) 054021 [arXiv:2211.16562] [INSPIRE].

    Article  ADS  Google Scholar 

  107. P. Colangelo, F. Giannuzzi and S. Nicotri, Hadronic light-by-light scattering contributions to (g – 2)μ from axial-vector and tensor mesons in the holographic soft-wall model, Phys. Rev. D 109 (2024) 094036 [arXiv:2402.07579] [INSPIRE].

    Article  ADS  Google Scholar 

  108. J. Leutgeb, J. Mager and A. Rebhan, Superconnections in AdS/QCD and the hadronic light-by-light contribution to the muon g − 2, arXiv:2411.10432 [INSPIRE].

  109. G. Eichmann, C.S. Fischer, T. Haeuser and O. Regenfelder, Axial-vector and scalar contributions to hadronic light-by-light scattering, arXiv:2411.05652 [INSPIRE].

  110. G.A. Schuler, F.A. Berends and R. van Gulik, Meson photon transition form-factors and resonance cross-sections in e+e− collisions, Nucl. Phys. B 523 (1998) 423 [hep-ph/9710462] [INSPIRE].

  111. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 110 (2024) 030001 [INSPIRE].

  112. R. García-Martín and B. Moussallam, MO analysis of the high statistics Belle results on γγ → π+π−, π0π0 with chiral constraints, Eur. Phys. J. C 70 (2010) 155 [arXiv:1006.5373] [INSPIRE].

    Article  ADS  Google Scholar 

  113. M. Hoferichter, D.R. Phillips and C. Schat, Roy-Steiner equations for γγ → ππ, Eur. Phys. J. C 71 (2011) 1743 [arXiv:1106.4147] [INSPIRE].

    Article  ADS  Google Scholar 

  114. B. Moussallam, Unified dispersive approach to real and virtual photon-photon scattering at low energy, Eur. Phys. J. C 73 (2013) 2539 [arXiv:1305.3143] [INSPIRE].

    Article  ADS  Google Scholar 

  115. I. Danilkin and M. Vanderhaeghen, Dispersive analysis of the γγ∗ → ππ process, Phys. Lett. B 789 (2019) 366 [arXiv:1810.03669] [INSPIRE].

    Article  ADS  Google Scholar 

  116. M. Hoferichter and P. Stoffer, Dispersion relations for γ∗γ∗ → ππ: helicity amplitudes, subtractions, and anomalous thresholds, JHEP 07 (2019) 073 [arXiv:1905.13198] [INSPIRE].

    Article  ADS  Google Scholar 

  117. I. Danilkin, O. Deineka and M. Vanderhaeghen, Dispersive analysis of the γ∗γ∗ → ππ process, Phys. Rev. D 101 (2020) 054008 [arXiv:1909.04158] [INSPIRE].

    Article  ADS  Google Scholar 

  118. J. Lu and B. Moussallam, The πη interaction and a0 resonances in photon-photon scattering, Eur. Phys. J. C 80 (2020) 436 [arXiv:2002.04441] [INSPIRE].

    Article  ADS  Google Scholar 

  119. H. Schäfer, M. Zanke, Y. Korte and B. Kubis, The semileptonic decays η(′) → π0ℓ+ℓ− and η′ → ηℓ+ℓ− in the standard model, Phys. Rev. D 108 (2023) 074025 [arXiv:2307.10357] [INSPIRE].

    Article  ADS  Google Scholar 

  120. L3 collaboration, f1(1285) formation in two photon collisions at LEP, Phys. Lett. B 526 (2002) 269 [hep-ex/0110073] [INSPIRE].

  121. L3 collaboration, Study of resonance formation in the mass region 1400-MeV to 1500-MeV through the reaction \( \gamma \gamma \to {K}_S^0{K}^{\pm }{\pi}^{\mp } \), JHEP 03 (2007) 018 [INSPIRE].

  122. BaBar collaboration, The e+e− → 2(π+π−)π0, 2(π+π−)η, K+K−π+π−π0 and K+K−π+π−η Cross Sections Measured with Initial-State Radiation, Phys. Rev. D 76 (2007) 092005 [Erratum ibid. 77 (2008) 119902] [arXiv:0708.2461] [INSPIRE].

  123. BaBar collaboration, Study of the reactions e+e− → K+K−π0π0π0, \( {e}^{+}{e}^{-}\to {K}_S^0{K}^{\pm }{\pi}^{\mp }{\pi}^0{\pi}^0 \), and \( {e}^{+}{e}^{-}\to {K}_S^0{K}^{\pm }{\pi}^{\mp }{\pi}^{+}{\pi}^{-} \) at center-of-mass energies from threshold to 4.5 GeV using initial-state radiation, Phys. Rev. D 107 (2023) 072001 [arXiv:2207.10340] [INSPIRE].

  124. K.-C. Yang, Light-cone distribution amplitudes of axial-vector mesons, Nucl. Phys. B 776 (2007) 187 [arXiv:0705.0692] [INSPIRE].

    Article  ADS  Google Scholar 

  125. F. Herren and M. Steinhauser, Version 3 of RunDec and CRunDec, Comput. Phys. Commun. 224 (2018) 333 [arXiv:1703.03751] [INSPIRE].

    Article  ADS  Google Scholar 

  126. K.G. Chetyrkin, J.H. Kühn and M. Steinhauser, RunDec: A Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].

  127. A. Vainshtein, Perturbative and nonperturbative renormalization of anomalous quark triangles, Phys. Lett. B 569 (2003) 187 [hep-ph/0212231] [INSPIRE].

  128. M. Knecht, S. Peris, M. Perrottet and E. de Rafael, New nonrenormalization theorems for anomalous three point functions, JHEP 03 (2004) 035 [hep-ph/0311100] [INSPIRE].

  129. C.F. Redmer, Experimental input to the hadronic corrections of the muon g – 2, Nuovo Cim. C 47 (2024) 247 [INSPIRE].

  130. BESIII collaboration, Future Physics Programme of BESIII, Chin. Phys. C 44 (2020) 040001 [arXiv:1912.05983] [INSPIRE].

  131. Belle-II collaboration, The Belle II Physics Book, PTEP 2019 (2019) 123C01 [Erratum ibid. 2020 (2020) 029201] [arXiv:1808.10567] [INSPIRE].

  132. M. Adam, The Hadronic Light-By-Light Contribution to the Muon g – 2 in Triangle Kinematics at Short Distances, MSc Thesis, Universität Wien, Austria (2023).

  133. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

  134. J.S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].

  135. G.S. Bali et al., Magnetic susceptibility of QCD at zero and at finite temperature from the lattice, Phys. Rev. D 86 (2012) 094512 [arXiv:1209.6015] [INSPIRE].

    Article  ADS  Google Scholar 

  136. BMW collaboration, Lattice QCD at the physical point: light quark masses, Phys. Lett. B 701 (2011) 265 [arXiv:1011.2403] [INSPIRE].

  137. RBC and UKQCD collaborations, Domain Wall QCD with Near-Physical Pions, Phys. Rev. D 87 (2013) 094514 [arXiv:1208.4412] [INSPIRE].

  138. Fermilab Lattice et al. collaborations, Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD, Phys. Rev. D 98 (2018) 054517 [arXiv:1802.04248] [INSPIRE].

  139. HPQCD collaboration, Determination of quark masses from nf = 4 lattice QCD and the RI-SMOM intermediate scheme, Phys. Rev. D 98 (2018) 014513 [arXiv:1805.06225] [INSPIRE].

  140. ALPHA collaboration, Light quark masses in Nf = 2 + 1 lattice QCD with Wilson fermions, Eur. Phys. J. C 80 (2020) 169 [arXiv:1911.08025] [INSPIRE].

  141. Extended Twisted Mass collaboration, Quark masses using twisted-mass fermion gauge ensembles, Phys. Rev. D 104 (2021) 074515 [arXiv:2104.13408] [INSPIRE].

Download references

Acknowledgments

We thank Gilberto Colangelo, Bastian Kubis, and Massimiliano Procura for decade-long collaboration on many aspects of the work presented here. We further thank Johan Bijnens, Nils Hermansson-Truedsson, Jan Lüdtke, Antonio Rodríguez-Sánchez, and Matthias Steinhauser for valuable discussions, and Johan Bijnens for sharing code for the αs corrections to the quark loop [96]. Financial support by the SNSF (Project Nos. PCEFP2_181117, PCEFP2_194272, and TMCG-2_213690) is gratefully acknowledged.

Author information

Authors and Affiliations

  1. Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland

    Martin Hoferichter & Maximilian Zillinger

  2. Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland

    Peter Stoffer

  3. PSI Center for Neutron and Muon Sciences, 5232, Villigen PSI, Switzerland

    Peter Stoffer

Authors
  1. Martin Hoferichter
    View author publications

    Search author on:PubMed Google Scholar

  2. Peter Stoffer
    View author publications

    Search author on:PubMed Google Scholar

  3. Maximilian Zillinger
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Maximilian Zillinger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2412.00178

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoferichter, M., Stoffer, P. & Zillinger, M. Dispersion relation for hadronic light-by-light scattering: subleading contributions. J. High Energ. Phys. 2025, 121 (2025). https://doi.org/10.1007/JHEP02(2025)121

Download citation

  • Received: 06 December 2024

  • Accepted: 28 January 2025

  • Published: 19 February 2025

  • Version of record: 19 February 2025

  • DOI: https://doi.org/10.1007/JHEP02(2025)121

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chiral Lagrangian
  • Nonperturbative Effects
  • Precision QED
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载