+

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

  • Open Access

Axial-vector exchange contribution to the hadronic light-by-light piece of the muon anomalous magnetic moment

Pablo Roig1,* and Pablo Sanchez-Puertas2,†

  • 1Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07000 Ciudad de México, México
  • 2Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  • *proig@fis.cinvestav.mx
  • psanchez@ifae.es

Phys. Rev. D 101, 074019 – Published 16 April, 2020

DOI: https://doi.org/10.1103/PhysRevD.101.074019

Abstract

In this work we study the axial contributions to the hadronic light-by-light piece of the muon anomalous magnetic moment. We point out some theoretical ambiguities in previous estimates, and opt to perform a new evaluation using resonace chiral theory, that is free of them. As a result, we obtain aμHLbL;A=(0.80.8+3.5)×1011, that might suggest a smaller value than most recent calculations, underlining the relevance of the off-shell prescription and the need for future work along this direction. Further, we find that our results depend critically on the asymptotic behavior of the form factors, and as such, emphasizes the relevance of future experiments at large photon virtualities. In addition, we present general results regarding the involved axial form factors description, comprehensively examining (and relating) the current approaches, that shall be of general interest.

Physics Subject Headings (PhySH)

Article Text

References (122)

  1. H. M. Foley and P. Kusch, Phys. Rev. 73, 412 (1948).
  2. P. Kusch and H. M. Foley, Phys. Rev. 74, 250 (1948).
  3. J. S. Schwinger, Phys. Rev. 73, 416 (1948).
  4. G. F. Giudice, P. Paradisi, and M. Passera, J. High Energy Phys. 11 (2012) 113.
  5. F. Terranova and G. M. Tino, Phys. Rev. A 89, 052118 (2014).
  6. D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. 100, 120801 (2008).
  7. T. Aoyama, T. Kinoshita, and M. Nio, Phys. Rev. D 97, 036001 (2018).
  8. P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. 88, 035009 (2016).
  9. P. Mohr, D. B. Newell, B. N. Taylor, and E. Tiesinga, Metrologia 55, 125 (2018).
  10. R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Science 360, 191 (2018).
  11. G. W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. Lett. 89, 101804 (2002); 89, 129903(E) (2002).
  12. G. W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. Lett. 92, 161802 (2004).
  13. G. W. Bennett et al. (Muon g-2 Collaboration), Phys. Rev. D 73, 072003 (2006).
  14. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
  15. F. Jegerlehner, Springer Tracts Mod. Phys. 274, 1 (2017).
  16. A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 97, 114025 (2018).
  17. M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Eur. Phys. J. C 80, 241 (2020).
  18. J. Grange et al. (Muon g-2 Collaboration), arXiv:1501.06858.
  19. M. Abe et al., Prog. Theor. Exp. Phys. (2019), 053C02.
  20. T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. Lett. 109, 111808 (2012).
  21. T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio, Phys. Rev. D 91, 033006 (2015); 96, 019901(E) (2017).
  22. C. Gnendiger, D. Stöckinger, and H. Stöckinger-Kim, Phys. Rev. D 88, 053005 (2013).
  23. A. Czarnecki, W. J. Marciano, and A. Vainshtein, Phys. Rev. D 67, 073006 (2003); 73, 119901(E) (2006).
  24. M. Knecht, S. Peris, M. Perrottet, and E. De Rafael, J. High Energy Phys. 11 (2002) 003.
  25. T. Ishikawa, N. Nakazawa, and Y. Yasui, Phys. Rev. D 99, 073004 (2019).
  26. J. Prades, E. de Rafael, and A. Vainshtein, Adv. Ser. Dir. High Energy Phys. 20, 303 (2009).
  27. F. Jegerlehner and A. Nyffeler, Phys. Rep. 477, 1 (2009).
  28. Hadronic Contributions to the Muon Anomalous Magnetic Moment Workshop. (g2)μ: Quo vadis? Workshop. Mini Proceedings, edited by T. Blum (2014), arXiv:1407.4021.
  29. A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Phys. Lett. B 734, 144 (2014).
  30. G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera, and P. Stoffer, Phys. Lett. B 735, 90 (2014).
  31. C. Bouchiat and L. Michel, J. Phys. Radium 22, 121 (1961).
  32. S. J. Brodsky and E. De Rafael, Phys. Rev. 168, 1620 (1968).
  33. F. Jegerlehner and O. V. Tarasov, Phys. Lett. B 639, 299 (2006).
  34. E. de Rafael, Phys. Lett. B 322, 239 (1994).
  35. J. Bijnens, E. Pallante, and J. Prades, Phys. Rev. Lett. 75, 1447 (1995); 75, 3781(E) (1995).
  36. J. Bijnens, E. Pallante, and J. Prades, Nucl. Phys. B474, 379 (1996).
  37. J. Bijnens, E. Pallante, and J. Prades, Nucl. Phys. B626, 410 (2002).
  38. M. Hayakawa, T. Kinoshita, and A. I. Sanda, Phys. Rev. Lett. 75, 790 (1995).
  39. M. Hayakawa, T. Kinoshita, and A. I. Sanda, Phys. Rev. D 54, 3137 (1996).
  40. M. Hayakawa and T. Kinoshita, Phys. Rev. D 57, 465 (1998); 66, 019902(E) (2002).
  41. M. Knecht, A. Nyffeler, M. Perrottet, and E. de Rafael, Phys. Rev. Lett. 88, 071802 (2002).
  42. M. Knecht and A. Nyffeler, Phys. Rev. D 65, 073034 (2002).
  43. I. R. Blokland, A. Czarnecki, and K. Melnikov, Phys. Rev. Lett. 88, 071803 (2002).
  44. M. J. Ramsey-Musolf and M. B. Wise, Phys. Rev. Lett. 89, 041601 (2002).
  45. K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004).
  46. K. Kampf and J. Novotny, Phys. Rev. D 84, 014036 (2011).
  47. K. T. Engel, H. H. Patel, and M. J. Ramsey-Musolf, Phys. Rev. D 86, 037502 (2012).
  48. P. Masjuan, Phys. Rev. D 86, 094021 (2012).
  49. K. T. Engel and M. J. Ramsey-Musolf, Phys. Lett. B 738, 123 (2014).
  50. P. Roig, A. Guevara, and G. López Castro, Phys. Rev. D 89, 073016 (2014).
  51. J. Bijnens and J. Relefors, J. High Energy Phys. 09 (2016) 113.
  52. G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, J. High Energy Phys. 09 (2014) 091.
  53. G. Colangelo, M. Hoferichter, B. Kubis, M. Procura, and P. Stoffer, Phys. Lett. B 738, 6 (2014).
  54. G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, J. High Energy Phys. 09 (2015) 074.
  55. G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, Phys. Rev. Lett. 118, 232001 (2017).
  56. G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, J. High Energy Phys. 04 (2017) 161.
  57. P. Masjuan and P. Sanchez-Puertas, Phys. Rev. D 95, 054026 (2017).
  58. M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, Phys. Rev. Lett. 121, 112002 (2018).
  59. M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, J. High Energy Phys. 10 (2018) 141.
  60. T. Blum, S. Chowdhury, M. Hayakawa, and T. Izubuchi, Phys. Rev. Lett. 114, 012001 (2015).
  61. J. Green, O. Gryniuk, G. von Hippel, H. B. Meyer, and V. Pascalutsa, Phys. Rev. Lett. 115, 222003 (2015).
  62. T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin, and C. Lehner, Phys. Rev. D 93, 014503 (2016).
  63. H. B. Meyer and H. Wittig, Prog. Part. Nucl. Phys. 104, 46 (2019).
  64. L. D. Landau, Dokl. Akad. Nauk Ser. Fiz. 60, 207 (1948).
  65. C.-N. Yang, Phys. Rev. 77, 242 (1950).
  66. V. Pauk and M. Vanderhaeghen, Eur. Phys. J. C 74, 3008 (2014).
  67. M. Hoferichter, Third Plenary Workshop of the Muon g-2 Theory Initiative, INT Washington (2019), https://indico.fnal.gov/event/21626/session/9/contribution/49/material/slides/0.pdf.
  68. P. Achard et al. (L3 Collaboration), Phys. Lett. B 526, 269 (2002).
  69. P. Achard et al. (L3 Collaboration), J. High Energy Phys. 03 (2007) 018.
  70. I. Danilkin and M. Vanderhaeghen, Phys. Rev. D 95, 014019 (2017).
  71. M. Knecht, S. Narison, A. Rabemananjara, and D. Rabetiarivony, Phys. Lett. B 787, 111 (2018).
  72. J. H. Kuhn, J. Kaplan, and E. G. O. Safiani, Nucl. Phys. B157, 125 (1979).
  73. A. S. Rudenko, Phys. Rev. D 96, 076004 (2017).
  74. A. I. Milstein and A. S. Rudenko, Phys. Lett. B 800, 135117 (2020).
  75. R. N. Cahn, Phys. Rev. D 35, 3342 (1987).
  76. F. Jegerlehner, EPJ Web Conf. 118, 01016 (2016).
  77. J. Bijnens, E. Gamiz, E. Lipartia, and J. Prades, J. High Energy Phys. 04 (2003) 055.
  78. S. Peris, Phys. Rev. D 74, 054013 (2006).
  79. P. Masjuan and S. Peris, J. High Energy Phys. 05 (2007) 040.
  80. P. Masjuan and S. Peris, Phys. Lett. B 663, 61 (2008).
  81. M. Poppe, Int. J. Mod. Phys. A 01, 545 (1986).
  82. V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G. Serbo, Phys. Rep. 15, 181 (1975).
  83. Y. Gao, A. V. Gritsan, Z. Guo, K. Melnikov, M. Schulze, and N. V. Tran, Phys. Rev. D 81, 075022 (2010).
  84. G. A. Schuler, F. A. Berends, and R. van Gulik, Nucl. Phys. B523, 423 (1998).
  85. V. Pascalutsa, V. Pauk, and M. Vanderhaeghen, Phys. Rev. D 85, 116001 (2012).
  86. G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl. Phys. B321, 311 (1989).
  87. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, Phys. Lett. B 223, 425 (1989).
  88. S. Weinberg, Physica (Amsterdam) 96A, 327 (1979).
  89. J. Gasser and H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).
  90. J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
  91. V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, and J. Portoles, Rev. Mod. Phys. 84, 399 (2012).
  92. D. G. Dumm, P. Roig, A. Pich, and J. Portoles, Phys. Lett. B 685, 158 (2010).
  93. O. Shekhovtsova, T. Przedzinski, P. Roig, and Z. Was, Phys. Rev. D 86, 113008 (2012).
  94. I. M. Nugent, T. Przedzinski, P. Roig, O. Shekhovtsova, and Z. Was, Phys. Rev. D 88, 093012 (2013).
  95. R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 120, 171802 (2018).
  96. R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 97, 072013 (2018).
  97. V. Cirigliano, G. Ecker, M. Eidemuller, R. Kaiser, A. Pich, and J. Portoles, Nucl. Phys. B753, 139 (2006).
  98. M. Jamin, J. A. Oller, and A. Pich, Nucl. Phys. B587, 331 (2000).
  99. Z.-H. Guo and J. A. Oller, Phys. Rev. D 84, 034005 (2011).
  100. H. Czyz, S. Ivashyn, A. Korchin, and O. Shekhovtsova, Phys. Rev. D 85, 094010 (2012).
  101. A. Guevara, P. Roig, and J. J. Sanz-Cillero, J. High Energy Phys. 06 (2018) 160.
  102. I. Rosell, J. J. Sanz-Cillero, and A. Pich, J. High Energy Phys. 08 (2004) 042.
  103. D. G. Dumm, A. Pich, and J. Portoles, Phys. Rev. D 62, 054014 (2000).
  104. G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, J. High Energy Phys. 03 (2020) 101.
  105. A. E. Dorokhov, A. P. Martynenko, F. A. Martynenko, A. E. Radzhabov, and A. S. Zhevlakov, EPJ Web Conf. 212, 05001 (2019).
  106. J. Leutgeb and A. Rebhan, arXiv:1912.01596.
  107. L. Cappiello, O. Cata, G. D’Ambrosio, D. Greynat, and A. Iyer, arXiv:1912.02779.
  108. M. N. Achasov et al. (SND Collaboration), Phys. Lett. B 800, 135074 (2020).
  109. G. Kopp, T. F. Walsh, and P. M. Zerwas, Nucl. Phys. B70, 461 (1974).
  110. M. Greco, Nuovo Cimento Soc. Ital. Fis. 42A, 315 (1977).
  111. F. M. Renard, Nuovo Cimento Soc. Ital. Fis. 80A, 1 (1984).
  112. R. N. Cahn, Phys. Rev. D 37, 833 (1988).
  113. M. Knecht, S. Peris, M. Perrottet, and E. de Rafael, J. High Energy Phys. 03 (2004) 035.
  114. T. Kadavý, K. Kampf, and J. Novotný, Nucl. Part. Phys. Proc. 270–272, 83 (2016).
  115. T. Kadavý, K. Kampf, and J. Novotný, EPJ Web Conf. 137, 05009 (2017).
  116. G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, Phys. Rev. D 101, 051501 (2020).
  117. G. ’t Hooft, Nucl. Phys. B72, 461 (1974).
  118. V. Cirigliano, G. Ecker, H. Neufeld, and A. Pich, J. High Energy Phys. 06 (2003) 012.
  119. Z.-H. Guo and J. J. Sanz-Cillero, Phys. Rev. D 89, 094024 (2014).
  120. S. Weinberg, Phys. Rev. Lett. 18, 507 (1967).
  121. P. Roig and J. J. Sanz Cillero, Phys. Lett. B 733, 158 (2014).
  122. R. Dickson et al. (CLAS Collaboration), Phys. Rev. C 93, 065202 (2016).

Outline

Information

Sign In to Your Journals Account

Filter

Filter

Article Lookup

Enter a citation

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载