Abstract
Dark photons have been well motivated as strong candidates for dark force carriers and light dark matter in the sub-GeV mass range. Compared with collider experiments, fixed-target experiments provide a complementary approach to searching for dark photons, particularly in the lower mass range. We have studied the physics potential of the electron-on-target experiment based on the Shanghai SHINE facility, which provides 10 MHz single electron beam at 8 GeV energy. This analysis focuses on dark photons being produced via electron and nucleon interaction and then decays to dark matter candidates, which escape detection as missing momentum in the detector. This experiment takes advantage of using missing momentum to enhance signal versus background separation power. In this study, signal samples as a function of dark photon mass and an inclusive background sample with 2.5 billion events are simulated with GEANT4. For better background estimates, major rare background processes have also been simulated. This paper presents the experiment and detector design, signal and background simulations, analysis strategy, and the prospective study of the experiment sensitivity. With 9 × 1014 electron-on-target events (about three years running), this experiment is expected to rule out most of the sensitive regions predicted by popular dark photon models.
Similar content being viewed by others
References
D. Hooper, D. P. Finkbeiner, and G. Dobler, Phys. Rev. D 76, 083012 (2007), arXiv: 0705.3655.
P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 571, A22 (2014), arXiv: 1303.5082.
K. Griest, and M. Kamionkowski, Phys. Rev. Lett. 64, 615 (1990).
C. M. Ho, and R. J. Scherrer, Phys. Rev. D 87, 023505 (2013), arXiv: 1208.4347.
G. Steigman, Phys. Rev. D 87, 103517 (2013), arXiv: 1303.0049.
C. Bœhm, M. J. Dolan, and C. McCabe, J. Cosmol. Astropart. Phys. 2013(8), 041 (2013), arXiv: 1303.6270.
K. M. Nollett, and G. Steigman, Phys. Rev. D 89, 083508 (2014), arXiv: 1312.5725.
K. M. Nollett, and G. Steigman, Phys. Rev. D 91, 083505 (2015), arXiv: 1411.6005.
D. Green, and S. Rajendran, J. High Energ. Phys. 2017(10), 13 (2017).
P. D. Serpico, and G. G. Raffelt, Phys. Rev. D 70, 043526 (2004), arXiv: astro-ph/0403417.
D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, Astrophys. J. 648, L109 (2006), arXiv: astro-ph/0608407.
D. Kyratzis, in Results overview from the DAMPE space mission in orbit: Proceedings of the 22nd Particles and Nuclei International Conference, 2021.
F. Giovacchini, J. Casaus, and A. Oliva, Nucl. Instrum. Method. Phys. Res. Sect. A 952, 161797 (2020).
J. K. Behr, in Searches for dark matter with the ATLAS and CMS experiments using LHC run 2 (2015-2018) data: Proceedings of the 22nd Particles and Nuclei International Conference, 2021.
M. Laurenza, in Dark-sector physics at Belle II: Proceedings of the 22nd Particles and Nuclei International Conference, 2021.
V. Prasad, in Dark matter/new physics searches at BESIII: Proceedings of Alpine LHC Physics Summit, Obergurgl, 2019.
Y. Meng, et al. (PandaX-4T Collaboration), Phys. Rev. Lett. 127, 261802 (2021), arXiv: 2107.13438.
R. Xu, et al. (CDEX Collaboration), Phys. Rev. D 106, 052008 (2022), arXiv: 2201.01704.
D. S. Akerib, et al. (LUX Collaboration), arXiv: 2201.05734.
E. Aprile, et al. (XENON Collaboration), Phys. Rev. D 106, 022001 (2022), arXiv: 2112.12116.
J. Billard, M. Boulay, S. Cebrián, L. Covi, G. Fiorillo, A. Green, J. Kopp, B. Majorovits, K. Palladino, F. Petricca, L. Roszkowski, and M. Schumann, Rep. Prog. Phys. 85, 056201 (2022), arXiv: 2104.07634.
B. Holdom, Phys. Lett. B 166, 196 (1986).
R. Foot, and X. G. He, Phys. Lett. B 267, 509 (1991).
K. Fuyuto, X. G. He, G. Li, and M. Ramsey-Musolf, Phys. Rev. D 101, 075016 (2020), arXiv: 1902.10340.
G. Choi, T. T. Yanagida, and N. Yokozaki, J. High Energ. Phys. 2021(1), 57 (2021).
Y. Cheng, X. G. He, M. J. Ramsey-Musolf, and J. Sun, arXiv: 2104.11563.
D. Banerjee, et al. (NA64 Collaboration), Phys. Rev. Lett. 123, 121801 (2019), arXiv: 1906.00176.
Y. Zhang, W. T. Zhang, M. Song, X. A. Pan, Z. M. Niu, and G. Li, Phys. Rev. D 100, 115016 (2019), arXiv: 1907.07046.
T. Åkesson, et al. (The LDMX Collaboration), J. High Energ. Phys. 2020, 3 (2020).
E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, Phys. Rev. D 91, 094026 (2015), arXiv: 1411.1404.
S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, Nucl. Instrum. Method. Phys. Res. Sect. A 506, 250 (2003).
M. Graham, C. Hearty, and M. Williams, Annu. Rev. Nucl. Part. Sci. 71, 37 (2021), arXiv: 2104.10280.
M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, arXiv: 2005.01515.
S. Andreas, C. Niebuhr, and A. Ringwald, Phys. Rev. D 86, 095019 (2012), arXiv: 1209.6083.
J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, Phys. Rev. D 80, 075018 (2009), arXiv: 0906.0580.
J. Wan, Y. Leng, B. Gao, F. Chen, J. Chen, L. Lai, W. Zhou, and W. Xu, Nucl. Instrum. Method. Phys. Res. Sect. A 1026, 166200 (2022).
Z. T. Zhao, C. Feng, and K. Q. Zhang, Nucl. Sci. Tech. 28, 117 (2017).
Z. Zhao, C. Feng, J. Chen, and Z. Wang, Sci. Bull. 61, 720 (2016).
Z. Y. Zhu, Z. T. Zhao, D. Wang, Z. Liu, R. X. Li, L. X. Yin, and Z. H. Yang, in SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai: Proceedings of the 38th International Free Electron Laser Conference, Santa Fe, 2017.
Y. Nosochkov, T. Beukers, A. Fry, C. Hast, T. Markiewicz, T. Nelson, N. Phinney, T. Raubenheimer, P. Schuster, and N. Toro, in Dark sector experiments at LCLS-II (DASEL) accelerator design: Proceedings of the 8th International Particle Accelerator Conference, Copenhagen, 2017.
A. Belyaev, N. D. Christensen, and A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013), arXiv: 1207.6082.
J. P. Lees, et al. (BaBar Collaboration), Phys. Rev. Lett. 119, 131804 (2017), arXiv: 1702.03327.
P. Deniverville, M. Pospelov, and A. Ritz, Phys. Rev. D 84, 075020 (2011), arXiv: 1107.4580.
B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 80, 095024 (2009), arXiv: 0906.5614.
B. Batell, R. Essig, and Z. Surujon, Phys. Rev. Lett. 113, 171802 (2014), arXiv: 1406.2698.
A. A. Aguilar-Arevalo, et al. (MiniBooNE-DM Collaboration), Phys. Rev. Lett. 118, 221803 (2017), arXiv: 1702.02688.
R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, and T. Volansky, Phys. Rev. Lett. 109, 021301 (2012), arXiv: 1206.2644.
D. Banerjee, et al. (The NA64 Collaboration), Phys. Rev. D 97, 072002 (2018), arXiv: 1710.00971.
T. Åkesson, N. Blinov, L. Brand-Baugher, C. Bravo, L. K. Bryngemark, P. Butti, C. Doglioni, C. Dukes, V. Dutta, B. Echenard, R. Ehrlich, T. Eichlersmith, A. Furmanski, C. Greenstein, C. Group, N. Gogate, V. Hegde, C. Herwig, D. G. Hitlin, D. Hoang, T. Horoho, J. Incandela, W. Ketchum, G. Krnjaic, A. Li, S. Li, D. Lin, J. Mans, C. M. Suarez, P. Masterson, M. Meier, S. Middleton, O. Moreno, G. Mullier, T. Nelson, J. Oyang, J. Pascadlo, R. Pöttgen, S. Prestel, L. S. Pico, P. Schuster, M. Solt, L. Tompkins, N. Toro, N. Tran, A. Whitbeck, K. Zhou, and L. Zichi, arXiv: 2203.08192.
Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 12150006), and Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University (Grant No. 21TQ1400209). The authors thank Shao-Feng Ge for the supervision on theoretical assumption and on signal sample generation.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Chen, J., Chen, JY., Chen, JF. et al. Prospective study of light dark matter search with a newly proposed DarkSHINE experiment. Sci. China Phys. Mech. Astron. 66, 211062 (2023). https://doi.org/10.1007/s11433-022-1983-8
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1007/s11433-022-1983-8