+
Skip to main content
Log in

Prospective study of light dark matter search with a newly proposed DarkSHINE experiment

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Dark photons have been well motivated as strong candidates for dark force carriers and light dark matter in the sub-GeV mass range. Compared with collider experiments, fixed-target experiments provide a complementary approach to searching for dark photons, particularly in the lower mass range. We have studied the physics potential of the electron-on-target experiment based on the Shanghai SHINE facility, which provides 10 MHz single electron beam at 8 GeV energy. This analysis focuses on dark photons being produced via electron and nucleon interaction and then decays to dark matter candidates, which escape detection as missing momentum in the detector. This experiment takes advantage of using missing momentum to enhance signal versus background separation power. In this study, signal samples as a function of dark photon mass and an inclusive background sample with 2.5 billion events are simulated with GEANT4. For better background estimates, major rare background processes have also been simulated. This paper presents the experiment and detector design, signal and background simulations, analysis strategy, and the prospective study of the experiment sensitivity. With 9 × 1014 electron-on-target events (about three years running), this experiment is expected to rule out most of the sensitive regions predicted by popular dark photon models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hooper, D. P. Finkbeiner, and G. Dobler, Phys. Rev. D 76, 083012 (2007), arXiv: 0705.3655.

    Article  Google Scholar 

  2. P. A. R. Ade, et al. (Planck Collaboration), Astron. Astrophys. 571, A22 (2014), arXiv: 1303.5082.

    Article  Google Scholar 

  3. K. Griest, and M. Kamionkowski, Phys. Rev. Lett. 64, 615 (1990).

    Article  Google Scholar 

  4. C. M. Ho, and R. J. Scherrer, Phys. Rev. D 87, 023505 (2013), arXiv: 1208.4347.

    Article  Google Scholar 

  5. G. Steigman, Phys. Rev. D 87, 103517 (2013), arXiv: 1303.0049.

    Article  Google Scholar 

  6. C. Bœhm, M. J. Dolan, and C. McCabe, J. Cosmol. Astropart. Phys. 2013(8), 041 (2013), arXiv: 1303.6270.

    Article  Google Scholar 

  7. K. M. Nollett, and G. Steigman, Phys. Rev. D 89, 083508 (2014), arXiv: 1312.5725.

    Article  Google Scholar 

  8. K. M. Nollett, and G. Steigman, Phys. Rev. D 91, 083505 (2015), arXiv: 1411.6005.

    Article  Google Scholar 

  9. D. Green, and S. Rajendran, J. High Energ. Phys. 2017(10), 13 (2017).

    Article  Google Scholar 

  10. P. D. Serpico, and G. G. Raffelt, Phys. Rev. D 70, 043526 (2004), arXiv: astro-ph/0403417.

    Article  Google Scholar 

  11. D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, Astrophys. J. 648, L109 (2006), arXiv: astro-ph/0608407.

    Article  Google Scholar 

  12. D. Kyratzis, in Results overview from the DAMPE space mission in orbit: Proceedings of the 22nd Particles and Nuclei International Conference, 2021.

  13. F. Giovacchini, J. Casaus, and A. Oliva, Nucl. Instrum. Method. Phys. Res. Sect. A 952, 161797 (2020).

    Article  Google Scholar 

  14. J. K. Behr, in Searches for dark matter with the ATLAS and CMS experiments using LHC run 2 (2015-2018) data: Proceedings of the 22nd Particles and Nuclei International Conference, 2021.

  15. M. Laurenza, in Dark-sector physics at Belle II: Proceedings of the 22nd Particles and Nuclei International Conference, 2021.

  16. V. Prasad, in Dark matter/new physics searches at BESIII: Proceedings of Alpine LHC Physics Summit, Obergurgl, 2019.

  17. Y. Meng, et al. (PandaX-4T Collaboration), Phys. Rev. Lett. 127, 261802 (2021), arXiv: 2107.13438.

    Article  Google Scholar 

  18. R. Xu, et al. (CDEX Collaboration), Phys. Rev. D 106, 052008 (2022), arXiv: 2201.01704.

    Article  Google Scholar 

  19. D. S. Akerib, et al. (LUX Collaboration), arXiv: 2201.05734.

  20. E. Aprile, et al. (XENON Collaboration), Phys. Rev. D 106, 022001 (2022), arXiv: 2112.12116.

    Article  Google Scholar 

  21. J. Billard, M. Boulay, S. Cebrián, L. Covi, G. Fiorillo, A. Green, J. Kopp, B. Majorovits, K. Palladino, F. Petricca, L. Roszkowski, and M. Schumann, Rep. Prog. Phys. 85, 056201 (2022), arXiv: 2104.07634.

    Article  Google Scholar 

  22. B. Holdom, Phys. Lett. B 166, 196 (1986).

    Article  Google Scholar 

  23. R. Foot, and X. G. He, Phys. Lett. B 267, 509 (1991).

    Article  Google Scholar 

  24. K. Fuyuto, X. G. He, G. Li, and M. Ramsey-Musolf, Phys. Rev. D 101, 075016 (2020), arXiv: 1902.10340.

    Article  Google Scholar 

  25. G. Choi, T. T. Yanagida, and N. Yokozaki, J. High Energ. Phys. 2021(1), 57 (2021).

    Article  Google Scholar 

  26. Y. Cheng, X. G. He, M. J. Ramsey-Musolf, and J. Sun, arXiv: 2104.11563.

  27. D. Banerjee, et al. (NA64 Collaboration), Phys. Rev. Lett. 123, 121801 (2019), arXiv: 1906.00176.

    Article  Google Scholar 

  28. Y. Zhang, W. T. Zhang, M. Song, X. A. Pan, Z. M. Niu, and G. Li, Phys. Rev. D 100, 115016 (2019), arXiv: 1907.07046.

    Article  Google Scholar 

  29. T. Åkesson, et al. (The LDMX Collaboration), J. High Energ. Phys. 2020, 3 (2020).

    Article  Google Scholar 

  30. E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, Phys. Rev. D 91, 094026 (2015), arXiv: 1411.1404.

    Article  Google Scholar 

  31. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell’Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O’Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, and D. Zschiesche, Nucl. Instrum. Method. Phys. Res. Sect. A 506, 250 (2003).

    Article  Google Scholar 

  32. M. Graham, C. Hearty, and M. Williams, Annu. Rev. Nucl. Part. Sci. 71, 37 (2021), arXiv: 2104.10280.

    Article  Google Scholar 

  33. M. Fabbrichesi, E. Gabrielli, and G. Lanfranchi, arXiv: 2005.01515.

  34. S. Andreas, C. Niebuhr, and A. Ringwald, Phys. Rev. D 86, 095019 (2012), arXiv: 1209.6083.

    Article  Google Scholar 

  35. J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, Phys. Rev. D 80, 075018 (2009), arXiv: 0906.0580.

    Article  Google Scholar 

  36. J. Wan, Y. Leng, B. Gao, F. Chen, J. Chen, L. Lai, W. Zhou, and W. Xu, Nucl. Instrum. Method. Phys. Res. Sect. A 1026, 166200 (2022).

    Article  Google Scholar 

  37. Z. T. Zhao, C. Feng, and K. Q. Zhang, Nucl. Sci. Tech. 28, 117 (2017).

    Article  Google Scholar 

  38. Z. Zhao, C. Feng, J. Chen, and Z. Wang, Sci. Bull. 61, 720 (2016).

    Article  Google Scholar 

  39. Z. Y. Zhu, Z. T. Zhao, D. Wang, Z. Liu, R. X. Li, L. X. Yin, and Z. H. Yang, in SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai: Proceedings of the 38th International Free Electron Laser Conference, Santa Fe, 2017.

  40. Y. Nosochkov, T. Beukers, A. Fry, C. Hast, T. Markiewicz, T. Nelson, N. Phinney, T. Raubenheimer, P. Schuster, and N. Toro, in Dark sector experiments at LCLS-II (DASEL) accelerator design: Proceedings of the 8th International Particle Accelerator Conference, Copenhagen, 2017.

  41. A. Belyaev, N. D. Christensen, and A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013), arXiv: 1207.6082.

    Article  Google Scholar 

  42. J. P. Lees, et al. (BaBar Collaboration), Phys. Rev. Lett. 119, 131804 (2017), arXiv: 1702.03327.

    Article  Google Scholar 

  43. P. Deniverville, M. Pospelov, and A. Ritz, Phys. Rev. D 84, 075020 (2011), arXiv: 1107.4580.

    Article  Google Scholar 

  44. B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 80, 095024 (2009), arXiv: 0906.5614.

    Article  Google Scholar 

  45. B. Batell, R. Essig, and Z. Surujon, Phys. Rev. Lett. 113, 171802 (2014), arXiv: 1406.2698.

    Article  Google Scholar 

  46. A. A. Aguilar-Arevalo, et al. (MiniBooNE-DM Collaboration), Phys. Rev. Lett. 118, 221803 (2017), arXiv: 1702.02688.

    Article  Google Scholar 

  47. R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, and T. Volansky, Phys. Rev. Lett. 109, 021301 (2012), arXiv: 1206.2644.

    Article  Google Scholar 

  48. D. Banerjee, et al. (The NA64 Collaboration), Phys. Rev. D 97, 072002 (2018), arXiv: 1710.00971.

    Article  Google Scholar 

  49. T. Åkesson, N. Blinov, L. Brand-Baugher, C. Bravo, L. K. Bryngemark, P. Butti, C. Doglioni, C. Dukes, V. Dutta, B. Echenard, R. Ehrlich, T. Eichlersmith, A. Furmanski, C. Greenstein, C. Group, N. Gogate, V. Hegde, C. Herwig, D. G. Hitlin, D. Hoang, T. Horoho, J. Incandela, W. Ketchum, G. Krnjaic, A. Li, S. Li, D. Lin, J. Mans, C. M. Suarez, P. Masterson, M. Meier, S. Middleton, O. Moreno, G. Mullier, T. Nelson, J. Oyang, J. Pascadlo, R. Pöttgen, S. Prestel, L. S. Pico, P. Schuster, M. Solt, L. Tompkins, N. Toro, N. Tran, A. Whitbeck, K. Zhou, and L. Zichi, arXiv: 2203.08192.

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 12150006), and Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University (Grant No. 21TQ1400209). The authors thank Shao-Feng Ge for the supervision on theoretical assumption and on signal sample generation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Li, Kun Liu or Hai-Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, JY., Chen, JF. et al. Prospective study of light dark matter search with a newly proposed DarkSHINE experiment. Sci. China Phys. Mech. Astron. 66, 211062 (2023). https://doi.org/10.1007/s11433-022-1983-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s11433-022-1983-8

Profiles

  1. Kim Siang Khaw
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载