+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo

Abstract

Tunable and reversible regulation of exogenous and endogenous gene expression would be useful for improving the safety and efficacy of gene therapy. Current chemically inducible systems are limited by the rapid diffusion and extended metabolism of small molecules, and associated side effects. Here we develop a photoactivatable RNA adenosine base editor (PA-rABE) by harnessing a compact Cas13 variant and a split ADAR2 deaminase fused with the Magnets system, which is activated through blue-light-induced dimerization. PA-rABE achieves highly efficient editing on endogenous RNA with minimal bystander editing and off-target effects. By editing a phosphorylation site of the endogenous CTNNB1 gene, PA-rABE stabilizes the β-catenin protein and activates Wnt signaling in vivo. Using adeno-associated virus vectors to deliver PA-rABE along with an hF9 variant containing a premature termination codon, we show amelioration of clotting defects in hemophilia B mice upon illumination. In summary, PA-rABE offers a controlled RNA base-editing technology for diverse biomedical applications, enabling reversible and spatiotemporally specific modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineered PA-rABE.
Fig. 2: Optimization of PA-rABE.
Fig. 3: Characterization of the PA-rABE system performance.
Fig. 4: Application of PA-rABE in endogenous targets.
Fig. 5: Performance of PA-rABE in vivo.
Fig. 6: PA-rABE-mediated optogenetic therapy for HB.

Similar content being viewed by others

Data availability

All NGS data have been deposited in the NCBI Sequence Read Archive database under BioProject numbers PRJNA1194220, PRJNA1197542 and PRJNA1194292 (refs. 58,59,60). Whole-transcriptome RNA-seq are available under BioProject numbers PRJNA1194549, PRJNA1207784 and PRJNA1207789 (refs. 61,62,63).

References

  1. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of CRISPR genome editing technologies. Cell 187, 1076–1100 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Zhong, G. et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat. Biotechnol. 38, 169–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Monteys, A. M. et al. Regulated control of gene therapies by drug-induced splicing. Nature 596, 291–295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, R. et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat. Biotechnol. 40, 779–786 (2022).

    Article  PubMed  Google Scholar 

  6. Pfeiffer, L. S. & Stafforst, T. Precision RNA base editing with engineered and endogenous effectors. Nat. Biotechnol. 41, 1526–1542 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Booth, B. J. et al. RNA editing: expanding the potential of RNA therapeutics. Mol. Ther. 31, 1533–1549 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Song, J., Zhuang, Y. & Yi, C. Programmable RNA base editing via targeted modifications. Nat. Chem. Biol. 20, 277–290 (2024).

    Article  CAS  PubMed  Google Scholar 

  9. Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Reautschnig, P. et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 40, 759–768 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Montiel-Gonzalez, M. F., Vallecillo-Viejo, I., Yudowski, G. A. & Rosenthal, J. J. C. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc. Natl Acad. Sci. USA 110, 18285–18290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han, W. et al. Programmable RNA base editing with a single gRNA-free enzyme. Nucleic Acids Res. 50, 9580–9595 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kannan, S. et al. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 40, 194–197 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Xu, C. et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat. Methods 18, 499–506 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Rauch, S. et al. Programmable RNA-guided RNA effector proteins built from human parts. Cell 178, 122–134.e12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rauch, S., Jones, K. A. & Dickinson, B. C. Small molecule-inducible RNA-targeting systems for temporal control of RNA regulation. ACS Cent. Sci. 6, 1987–1996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stroppel, A. S., Lappalainen, R. & Stafforst, T. Controlling site-directed RNA editing by chemically induced dimerization. Chemistry 27, 12300–12304 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Y. et al. Light-triggered site-directed RNA editing by endogenous ADAR1 with photolabile guide RNA. Cell Chem. Biol. 30, 672–682.e5 (2023).

    Article  CAS  Google Scholar 

  23. Hanswillemenke, A., Kuzdere, T., Vogel, P., Jékely, G. & Stafforst, T. Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein. J. Am. Chem. Soc. 137, 15875–15881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bennett, C. F., Baker, B. F., Pham, N., Swayze, E. & Geary, R. S. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57, 81–105 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Yu, J. et al. Programmable RNA base editing with photoactivatable CRISPR-Cas13. Nat. Commun. 15, 673 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Katrekar, D. et al. Comprehensive interrogation of the ADAR2 deaminase domain for engineering enhanced RNA editing activity and specificity. Elife 11, 1–19 (2022).

    Article  Google Scholar 

  28. Wong, S. K., Sato, S. & Lazinski, D. W. Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paulmurugan, R. & Gambhir, S. S. Combinatorial library screening for developing an improved split-firefly luciferase fragment-assisted complementation system for studying protein–protein interactions. Anal. Chem. 79, 2346–2353 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, H. et al. Efficient photoactivatable Dre recombinase for cell type-specific spatiotemporal control of genome engineering in the mouse. Proc. Natl Acad. Sci. USA 117, 33426–33435 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, H. et al. Stable transgenic mouse strain with enhanced photoactivatable Cre recombinase for spatiotemporal genome manipulation. Adv. Sci. 9, 1–12 (2022).

    Article  CAS  Google Scholar 

  33. Kuttan, A. & Bass, B. L. Mechanistic insights into editing-site specificity of ADARs. Proc. Natl Acad. Sci. USA 109, E3295–E3304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, X. et al. Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e. Adv. Sci. 10, 1–8 (2023).

    Google Scholar 

  35. Benedetti, L. et al. Optimized vivid-derived magnets photodimerizers for subcellular optogenetics in mammalian cells. Elife 9, 1–49 (2020).

    Article  Google Scholar 

  36. Martins-Dias, P. & Romão, L. Nonsense suppression therapies in human genetic diseases. Cell. Mol. Life Sci. 78, 4677–4701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo, N. et al. Near-cognate tRNAs increase the efficiency and precision of pseudouridine-mediated readthrough of premature termination codons. Nat. Biotechnol. 43, 114–123 (2025).

    Article  CAS  PubMed  Google Scholar 

  38. Albers, S. et al. Engineered tRNAs suppress nonsense mutations in cells and in vivo. Nature 618, 842–848 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. MacDonald, B. T., Tamai, K. & He, X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Kay, M. A., He, C.-Y. & Chen, Z.-Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 28, 1287–1289 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lamb, Y. N. & Hoy, S. M. Eftrenonacog alfa: a review in haemophilia B. Drugs 83, 807–818 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nathwani, A. C. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. George, L. A. et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N. Engl. J. Med. 377, 2215–2227 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaczmarek, R. & Herzog, R. W. Treatment-induced hemophilic thrombosis? Mol. Ther. 30, 505–506 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Simioni, P. et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N. Engl. J. Med. 361, 1671–1675 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Guan, Y. et al. CRISPR/Cas9‐mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 8, 477–488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anadón, C. et al. Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumorigenesis. Oncogene 35, 4407–4413 (2016).

    Article  PubMed  Google Scholar 

  50. Teoh, P. J. et al. Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood 132, 1304–1317 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen, N. T. et al. Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nat. Nanotechnol. 16, 1424–1434 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang, Z. et al. Engineering light-controllable CAR T cells for cancer immunotherapy. Sci. Adv. 6, 1–14 (2020).

    Article  Google Scholar 

  53. Bansal, A., Shikha, S. & Zhang, Y. Towards translational optogenetics. Nat. Biomed. Eng. 7, 349–369 (2023).

    Article  PubMed  Google Scholar 

  54. Zhou, Y. et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat. Biotechnol. 40, 262–272 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Kuwasaki, Y. et al. A red light-responsive photoswitch for deep tissue optogenetics. Nat. Biotechnol. 40, 1672–1679 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Bonger, K. M., Chen, L., Liu, C. W. & Wandless, T. J. Small-molecule displacement of a cryptic degron causes conditional protein degradation. Nat. Chem. Biol. 7, 531–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hwang, G.-H. et al. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics 19, 542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1194220 (2025).

  59. Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1194292 (2025).

  60. Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1197542 (2025).

  61. Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1207784 (2025).

  62. Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1194549 (2025).

  63. Li, H. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. NCBI SRA https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1207789 (2025).

Download references

Acknowledgements

We extend our gratitude to H. Yang (HuidaGene Therapeutics Co. Ltd.) and T. Chi (School of Life Sciences and Technology, ShanghaiTech University) for providing mxABE and REPAIRx plasmids, respectively. We are grateful to the Laboratory Animal Center (Minhang Campus) ECNU Multifunctional Platform for Innovation and the East China Normal University Public Platform for Innovation (011). We thank Y. Zhang from the Flow Cytometry Core Facility of School of Life Sciences in the East China Normal University, and Shanghai Decode Biotech Co., Ltd. for technical support. This study was partially supported by grants from the National Natural Science Foundation of China (numbers 32025023, 32230064, 32101194, 32311530111 and 32271485), National Key R&D Program of China (2023YFC3403400 and 2023YFE0209200), China Postdoctoral Science Foundation (BX2021104), Shanghai Municipal Commission for Science and Technology (21JC1402200, 24J22800400), the Fundamental Research Funds for the Central Universities and Swedish Research Council (Vetenskapsrådet, 2020-03543). D.L. is a SANS Exploration Scholar.

Author information

Authors and Affiliations

Authors

Contributions

H.L., M.L. and D.L. designed the experiments. H.L., Y.Q., B.S., X.Q., X. Li., J.Y., X. Liu., Z.Z., H.H. and S.Y. performed the experiments. H.L., D.L., D.Z., J.J., L.W., B.D., M.L., H.Y., Z.S., Y.C. and X.Z. analyzed the data. H.L., Q.D. and D.L. wrote the paper with input from all the authors. D.L. supervised the research.

Corresponding authors

Correspondence to Bing Du, Mingyao Liu or Dali Li.

Ethics declarations

Competing interests

A patent application (application number PCT/CN2024/124011) based on the results reported in this study has been submitted but not yet authorized. The patent applicant is East China Normal University, and D.L., H.L., Y.Q., B.S., X.Q. and M.L. are the inventors. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Yuan Ping, Yi Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Tables 1–5 and Note 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Qiu, Y., Song, B. et al. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02610-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02610-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载