+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How laypeople evaluate scientific explanations containing jargon

Abstract

Individuals rely on others’ expertise to achieve a basic understanding of the world. But how can non-experts achieve understanding from explanations that, by definition, they are ill-equipped to assess? Across 9 experiments with 6,698 participants (Study 1A = 737; 1B = 734; 1C = 733; 2A = 1,014; 2B = 509; 2C = 1,012; 3A = 1,026; 3B = 512; 4 = 421), we address this puzzle by focusing on scientific explanations with jargon. We identify ‘when’ and ‘why’ the inclusion of jargon makes explanations more satisfying, despite decreasing their comprehensibility. We find that jargon increases satisfaction because laypeople assume the jargon fills gaps in explanations that are otherwise incomplete. We also identify strategies for debiasing these judgements: when people attempt to generate their own explanations, inflated judgements of poor explanations with jargon are reduced, and people become better calibrated in their assessments of their own ability to explain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Explanatory satisfaction and comprehensibility as a function of jargon in Studies 1A–C.
Fig. 2: Explanatory satisfaction and perceived gappiness as a function of jargon and explanation completeness in Study 2A.
Fig. 3: Sample stimuli and results for explanatory satisfaction and perceived gappiness as a function of jargon in Study 2C.
Fig. 4: Explanatory satisfaction, perceived gappiness and explanation quality in Studies 3A and B.
Fig. 5: Quality ratings from Studies 3B and 4, as well as correlations between those ratings as a function of (coded) jargon.

Similar content being viewed by others

Data availability

Data for all studies are publicly available in a dedicated OSF folder at https://osf.io/ytakw/?view_only=f3c34c42f79d4ecca2ab5502c35c0591 (ref. 86).

Code availability

Code for all analyses, figures and tables in both the main text and Supplementary Information is publicly available in a dedicated OSF folder at https://osf.io/ytakw/?view_only=f3c34c42f79d4ecca2ab5502c35c0591 (ref. 86).

References

  1. Keil, F. C. Running on empty? How folk science gets by with less. Curr. Dir. Psychol. Sci. 21, 329–334 (2012).

    Article  Google Scholar 

  2. Sloman, S. & Fernbach, P. The Knowledge Illusion: Why We Never Think Alone (Penguin, 2018).

  3. Ballantyne, N. Knowing Our Limits (Oxford Univ. Press, 2019).

  4. DiPaolo, J. What’s wrong with epistemic trespassing? Philos. Stud. 179, 223–243 (2022).

    Article  PubMed  Google Scholar 

  5. DiPaolo, J. Who knows what? Epistemic dependence, inquiry, and function-first epistemology. Inquiry 67, 670–687 (2024).

    Article  Google Scholar 

  6. Peltokorpi, V. Transactive memory systems. Rev. Gen. Psychol. 12, 378–394 (2008).

    Article  Google Scholar 

  7. Ren, Y. & Argote, L. Transactive memory systems 1985–2010: an integrative framework of key dimensions, antecedents, and consequences. Acad. Manage. Ann. 5, 189–229 (2011).

    Article  Google Scholar 

  8. Wegner, D. M. in Theories of Group Behavior (eds Mullen, B. & Goethals, G. R.) 185–208 (Springer, 1987).

  9. Bromme, R. & Thomm, E. Knowing who knows: laypersons’ capabilities to judge experts’ pertinence for science topics. Cogn. Sci. 40, 241–252 (2016).

    Article  PubMed  Google Scholar 

  10. Wilkenfeld, D. A., Plunkett, D. & Lombrozo, T. Depth and deference: when and why we attribute understanding. Philos. Stud. 173, 373–393 (2016).

    Article  Google Scholar 

  11. Sparrow, B., Liu, J. & Wegner, D. M. Google effects on memory: cognitive consequences of having information at our fingertips. Science 333, 776–778 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Bromme, R., Rambow, R. & Nückles, M. Expertise and estimating what other people know: the influence of professional experience and type of knowledge. J. Exp. Psychol. Appl. 7, 317–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Watson, J. C. Epistemic neighbors: trespassing and the range of expert authority. Synthese 200, 408 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lilienfeld, S. O. Can psychology become a science? Pers. Individ. Dif. 49, 281–288 (2010).

    Article  Google Scholar 

  15. Boyd, K. Trusting scientific experts in an online world. Synthese 200, 14 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lilienfeld, S. O. Public skepticism of psychology: why many people perceive the study of human behavior as unscientific. Am. Psychol. 67, 111–129 (2012).

    Article  PubMed  Google Scholar 

  17. Aslanov, I. & Guerra, E. Tautological formal explanations: does prior knowledge affect their satisfiability? Front. Psychol. 14, 1258985 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aslanov, I. A., Sudorgina, Y. V. & Kotov, A. A. The explanatory effect of a label: its influence on a category persists even if we forget the label. Front. Psychol. 12, 745586 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bennett, E. M. & McLaughlin, P. J. Neuroscience explanations really do satisfy: a systematic review and meta-analysis of the seductive allure of neuroscience. Public Underst. Sci. 33, 290–307 (2024).

    Article  PubMed  Google Scholar 

  20. Bulut, N. S., Gürsoy, S. C., Yorguner, N., Çarkaxhiu Bulut, G. & Sayar, K. The seductive allure effect extends from neuroscientific to psychoanalytic explanations among Turkish medical students: preliminary implications of biased scientific reasoning within the context of medical and psychiatric training. Think. Reason. 28, 625–644 (2022).

    Article  Google Scholar 

  21. Eriksson, K. The nonsense math effect. Judgm. Decis. Mak. 7, 746–749 (2012).

    Article  Google Scholar 

  22. Fernandez-Duque, D., Evans, J., Christian, C. & Hodges, S. D. Superfluous neuroscience information makes explanations of psychological phenomena more appealing. J. Cogn. Neurosci. 27, 926–944 (2015).

    Article  PubMed  Google Scholar 

  23. Giffin, C., Wilkenfeld, D. & Lombrozo, T. The explanatory effect of a label: explanations with named categories are more satisfying. Cognition 168, 357–369 (2017).

    Article  PubMed  Google Scholar 

  24. Hemmatian, B. & Sloman, S. A. Community appeal: explanation without information. J. Exp. Psychol. Gen. 147, 1677–1712 (2018).

    Article  PubMed  Google Scholar 

  25. Hopkins, E. J., Weisberg, D. S. & Taylor, J. C. V. The seductive allure is a reductive allure: people prefer scientific explanations that contain logically irrelevant reductive information. Cognition 155, 67–76 (2016).

    Article  PubMed  Google Scholar 

  26. Hopkins, E. J., Weisberg, D. S. & Taylor, J. C. V. Does expertise moderate the seductive allure of reductive explanations? Acta Psychol. 198, 102890 (2019).

    Article  Google Scholar 

  27. Liquin, E. G. & Lombrozo, T. Motivated to learn: an account of explanatory satisfaction. Cogn. Psychol. 132, 101453 (2022).

    Article  PubMed  Google Scholar 

  28. Minahan, J. & Siedlecki, K. L. Individual differences in need for cognition influence the evaluation of circular scientific explanations. Pers. Individ. Dif. 99, 113–117 (2016).

    Article  Google Scholar 

  29. Rhodes, R. E., Rodriguez, F. & Shah, P. Explaining the alluring influence of neuroscience information on scientific reasoning. J. Exp. Psychol. Learn. Mem. Cogn. 40, 1432–1440 (2014).

    Article  PubMed  Google Scholar 

  30. Weisberg, D. S., Hopkins, E. J. & Taylor, J. C. V. People’s explanatory preferences for scientific phenomena. Cogn. Res. 3, 44 (2018).

    Article  Google Scholar 

  31. Weisberg, D. S., Taylor, J. C. V. & Hopkins, E. J. Deconstructing the seductive allure of neuroscience explanations. Judgm. Decis. Mak. 10, 429–441 (2015).

    Article  Google Scholar 

  32. Weisberg, D. S., Keil, F. C., Goodstein, J., Rawson, E. & Gray, J. R. The seductive allure of neuroscience explanations. J. Cogn. Neurosci. 20, 470–477 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bullock, O. M., Colón Amill, D., Shulman, H. C. & Dixon, G. N. Jargon as a barrier to effective science communication: evidence from metacognition. Public Underst. Sci. 28, 845–853 (2019).

    Article  PubMed  Google Scholar 

  34. Scharrer, L., Bromme, R. & Stadtler, M. Information easiness affects non-experts’ evaluation of scientific claims about which they hold prior beliefs. Front. Psychol. 12, 678313 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Scharrer, L., Pape, V. & Stadtler, M. Watch out: fake! How warning labels affect laypeople’s evaluation of simplified scientific misinformation. Discourse Process. 59, 575–590 (2022).

    Article  Google Scholar 

  36. Scharrer, L., Stadtler, M. & Bromme, R. You’d better ask an expert: mitigating the comprehensibility effect on laypeople’s decisions about science-based knowledge claims. Appl. Cogn. Psychol. 28, 465–471 (2014).

    Article  Google Scholar 

  37. Scharrer, L., Stadtler, M. & Bromme, R. Judging scientific information: does source evaluation prevent the seductive effect of text easiness? Learn. Instr. 63, 101215 (2019).

    Article  Google Scholar 

  38. Scharrer, L., Britt, M. A., Stadtler, M. & Bromme, R. Easy to understand but difficult to decide: information comprehensibility and controversiality affect laypeople’s science-based decisions. Discourse Process. 50, 361–387 (2013).

    Article  Google Scholar 

  39. Scharrer, L., Bromme, R., Britt, M. A. & Stadtler, M. The seduction of easiness: how science depictions influence laypeople’s reliance on their own evaluation of scientific information. Learn. Instr. 22, 231–243 (2012).

    Article  Google Scholar 

  40. Rozenblit, L. & Keil, F. The misunderstood limits of folk science: an illusion of explanatory depth. Cogn. Sci. 26, 521–562 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bromme, R., Thomm, E. & Ratermann, K. Who knows? Explaining impacts on the assessment of our own knowledge and of the knowledge of experts. Z. Pädagog. Psychol. 30, 97–108 (2016).

    Google Scholar 

  42. Meyers, E. A., Gretton, J. D., Budge, J. R. C., Fugelsang, J. A. & Koehler, D. J. Broad effects of shallow understanding: explaining an unrelated phenomenon exposes the illusion of explanatory depth. Judgm. Decis. Mak. 18, e24 (2023).

    Article  Google Scholar 

  43. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article  Google Scholar 

  44. Montoya, A. K. Probing moderation analysis in two-instance repeated-measures designs. Multivar. Behav. Res. 53, 140–141 (2018).

    Article  Google Scholar 

  45. Diedenhofen, B. & Musch, J. cocor: a comprehensive solution for the statistical comparison of correlations. PLoS ONE 10, e0121945 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zou, G. Y. Toward using confidence intervals to compare correlations. Psychol. Methods 12, 399–413 (2007).

    Article  PubMed  Google Scholar 

  47. Bromme, R. & Goldman, S. R. The public’s bounded understanding of science. Educ. Psychol. 49, 59–69 (2014).

    Article  Google Scholar 

  48. Kelemen, D., Rottman, J. & Seston, R. Professional physical scientists display tenacious teleological tendencies: purpose-based reasoning as a cognitive default. J. Exp. Psychol. Gen. 142, 1074–1083 (2013).

    Article  PubMed  Google Scholar 

  49. Goldberg, R. F. & Thompson-Schill, S. L. Developmental ‘roots’ in mature biological knowledge. Psychol. Sci. 20, 480–487 (2009).

    Article  PubMed  Google Scholar 

  50. Shtulman, A. Qualitative differences between naïve and scientific theories of evolution. Cogn. Psychol. 52, 170–194 (2006).

    Article  PubMed  Google Scholar 

  51. Shtulman, A. & Valcarcel, J. Scientific knowledge suppresses but does not supplant earlier intuitions. Cognition 124, 209–215 (2012).

    Article  PubMed  Google Scholar 

  52. Kovaka, K. Climate change denial and beliefs about science. Synthese 198, 2355–2374 (2021).

    Article  Google Scholar 

  53. Anderson, C., Brion, S., Moore, D. A. & Kennedy, J. A. A status-enhancement account of overconfidence. J. Pers Soc. Psychol. 103, 718–735 (2012).

    Article  PubMed  Google Scholar 

  54. Cheever, N. A. & Rokkum, J. in The Wiley Handbook of Psychology, Technology, and Society (eds Rosen, L. D. et al.) 56–73 (Wiley, 2015).

  55. Hofer, B. K. Epistemological understanding as a metacognitive process: thinking aloud during online searching. Educ. Psychol. 39, 43–55 (2004).

    Article  Google Scholar 

  56. Fonseca, B. & Chi, M. in Handbook of Research on Learning and Instruction (eds Mayer, R. E. & Alexander, P. A.) 296–312 (Routledge, 2010).

  57. Kruger, J. & Dunning, D. Unskilled and unaware of it: how difficulties in recognizing one’s own incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol. 77, 1121–1134 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Sanchez, C. & Dunning, D. Intermediate science knowledge predicts overconfidence. Trends Cogn. Sci. 28, 284–285 (2024).

    Article  PubMed  Google Scholar 

  59. Lackner, S., Francisco, F., Mendonça, C., Mata, A. & Gonçalves-Sá, J. Intermediate levels of scientific knowledge are associated with overconfidence and negative attitudes towards science. Nat. Hum. Behav. 7, 1490–1501 (2023).

    Article  PubMed  Google Scholar 

  60. Light, N., Fernbach, P. M., Rabb, N., Geana, M. V. & Sloman, S. A. Knowledge overconfidence is associated with anti-consensus views on controversial scientific issues. Sci. Adv. 8, eabo0038 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanchez, C. & Dunning, D. Overconfidence among beginners: is a little learning a dangerous thing? J. Pers. Soc. Psychol. 114, 10–28 (2018).

    Article  PubMed  Google Scholar 

  62. Sanchez, C. & Dunning, D. Decision fluency and overconfidence among beginners. Decision 7, 225–237 (2020).

    Article  Google Scholar 

  63. Hoogeveen, S. et al. The Einstein effect provides global evidence for scientific source credibility effects and the influence of religiosity. Nat. Hum. Behav. 6, 523–535 (2022).

    Article  PubMed  Google Scholar 

  64. Kominsky, J. F., Zamm, A. P. & Keil, F. C. Knowing when help is needed: a developing sense of causal complexity. Cogn. Sci. 42, 491–523 (2018).

    Article  PubMed  Google Scholar 

  65. Simis, M. J., Madden, H., Cacciatore, M. A. & Yeo, S. K. The lure of rationality: why does the deficit model persist in science communication? Public Underst. Sci. 25, 400–414 (2016).

    Article  PubMed  Google Scholar 

  66. Trench, B. in Communicating Science in Social Contexts: New Models, New Practices (eds Cheng, D. et al.) 119–135 (Springer, 2008).

  67. Hendriks, F., Kienhues, D. & Bromme, R. in Trust and Communication in a Digitized World: Models and Concepts of Trust Research (ed. Blöbaum, B.) 143–159 (Springer, 2016).

  68. Kaden, T., Jones, S., Catto, R. & Elsdon-Baker, F. Knowledge as explanandum: disentangling lay and professional perspectives on science and religion. Stud. Relig. 47, 500–521 (2018).

    Article  Google Scholar 

  69. Scheufele, D. A. Science communication as political communication. Proc. Natl Acad. Sci. USA 111, 13585–13592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cruz, F. & Mata, A. Self-serving beliefs about science: science justifies my weaknesses (but not other people’s). Public Underst. Sci. 34, 172–187 (2025).

  71. Ditto, P. H. & Lopez, D. F. Motivated skepticism: use of differential decision criteria for preferred and nonpreferred conclusions. J. Pers. Soc. Psychol. 63, 568–584 (1992).

    Article  Google Scholar 

  72. Munro, G. D. & Ditto, P. H. Biased assimilation, attitude polarization, and affect in reactions to stereotype-relevant scientific information. Pers. Soc. Psychol. Bull. 23, 636–653 (1997).

    Article  Google Scholar 

  73. Rutjens, B. T., Sutton, R. M. & van der Lee, R. Not all skepticism is equal: exploring the ideological antecedents of science acceptance and rejection. Pers. Soc. Psychol. Bull. 44, 384–405 (2018).

    Article  PubMed  Google Scholar 

  74. Scharrer, L., Rupieper, Y., Stadtler, M. & Bromme, R. When science becomes too easy: science popularization inclines laypeople to underrate their dependence on experts. Public Underst. Sci. 26, 1003–1018 (2017).

    Article  PubMed  Google Scholar 

  75. Sloman, S. A. & Rabb, N. Your understanding is my understanding: evidence for a community of knowledge. Psychol. Sci. 27, 1451–1460 (2016).

    Article  PubMed  Google Scholar 

  76. Fisher, M., Goddu, M. K. & Keil, F. C. Searching for explanations: how the Internet inflates estimates of internal knowledge. J. Exp. Psychol. Gen. 144, 674–687 (2015).

    Article  PubMed  Google Scholar 

  77. Rabb, N., Fernbach, P. M. & Sloman, S. A. Individual representation in a community of knowledge. Trends Cogn. Sci. 23, 891–902 (2019).

    Article  PubMed  Google Scholar 

  78. Messeri, L. & Crockett, M. J. Artificial intelligence and illusions of understanding in scientific research. Nature 627, 49–58 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Birhane, A., Kasirzadeh, A., Leslie, D. & Wachter, S. Science in the age of large language models. Nat. Rev. Phys. 5, 277–280 (2023).

    Article  Google Scholar 

  80. Ostinelli, M., Bonezzi, A. & Lisjak, M. Unintended effects of algorithmic transparency: the mere prospect of an explanation can foster the illusion of understanding how an algorithm works. J. Consum. Psychol. 35, 203–219 (2025).

  81. Dung, L. Current cases of AI misalignment and their implications for future risks. Synthese 202, 138 (2023).

    Article  Google Scholar 

  82. Kidd, C. & Birhane, A. How AI can distort human beliefs. Science 380, 1222–1223 (2023).

    Article  CAS  PubMed  Google Scholar 

  83. Celiktutan, B., Cadario, R. & Morewedge, C. K. People see more of their biases in algorithms. Proc. Natl Acad. Sci. USA 121, e2317602121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Erdfelder, E., Faul, F. & Buchner, A. GPower: a general power analysis program. Behav. Res. Methods Instrum. Comput. 28, 1–11 (1996).

    Article  Google Scholar 

  85. Lakens, D. & Caldwell, A. R. Simulation-based power analysis for factorial analysis of variance designs. Adv. Methods Pract. Psychol. Sci. https://doi.org/10.1177/2515245920951503 (2021).

    Article  Google Scholar 

  86. Cruz, F., & Lombrozo, T. How laypeople evaluate scientific explanations containing jargon. OSF https://osf.io/ytakw/?view_only=f3c34c42f79d4ecca2ab5502c35c0591 (2023).

Download references

Acknowledgements

We thank Fundação para a Ciência e Tecnologia (Doctoral Fellowship 2022.13009.BD) and Fulbright Portugal (Fulbright Research Fellowship 2023–2024) for their support in sponsoring F.C.’s visit to Princeton University, as well as the Concepts and Cognition Lab for feedback on subsets of this work. This work was not supported by any external funding, and the entities mentioned above had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. A subset of these experiments was presented at the 51st Annual Meeting of the Society for Philosophy and Psychology and at the 46th Annual Meeting of the Cognitive Science Society.

Author information

Authors and Affiliations

Authors

Contributions

F.C. and T.L. contributed equally to this work. F.C. and T.L. conceptualized the studies and research designs, and developed the relevant stimuli. F.C. carried out experiment programming and data analysis, and wrote the original draft. T.L. provided funding and supervision. F.C. and T.L. read, reviewed and agreed to the published version of the Article.

Corresponding author

Correspondence to Francisco Cruz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Steven Sloman, Marc Stadtler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional analyses, and Supplementary Tables 1–31 and Figs. 1–7.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, F., Lombrozo, T. How laypeople evaluate scientific explanations containing jargon. Nat Hum Behav 9, 2038–2053 (2025). https://doi.org/10.1038/s41562-025-02227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-025-02227-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载