+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The genetic landscape of neuro-related proteins in human plasma

Abstract

Understanding the genetic basis of neuro-related proteins is essential for dissecting the molecular basis of human behavioural traits and the disease aetiology of neuropsychiatric disorders. Here the SCALLOP Consortium conducted a genome-wide association meta-analysis of over 12,000 individuals for 184 neuro-related proteins in human plasma. The analysis identified 125 cis-regulatory protein quantitative trait loci (cis-pQTL) and 164 trans-pQTL. The mapped pQTL capture on average 50% of each protein’s heritability. At the cis-pQTL, multiple proteins shared a genetic basis with human behavioural traits such as alcohol and food intake, smoking and educational attainment, as well as neurological conditions and psychiatric disorders such as pain, neuroticism and schizophrenia. Integrating with established drug information, the causal inference analysis validated 52 out of 66 matched combinations of protein targets and diseases or side effects with available drugs while suggesting hundreds of repurposing and new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the mapped pQTL.
Fig. 2: Effects of the proteins on human behavioural traits inferred by MR analyses.
Fig. 3: Effects of the proteins on neuro-related conditions inferred by MR analyses.
Fig. 4: Effects of the proteins on other complex diseases inferred by MR analyses.
Fig. 5: Examples of regional association patterns for colocalized cis-pQTL and complex traits.
Fig. 6: Drug targets revealed by MR analyses.

Similar content being viewed by others

Data availability

The full genome-wide summary association statistics for the 184 proteins are publicly available at https://doi.org/10.7488/ds/7522; cis-eQTL summary-level data by eQTLGen, https://eqtlgen.org/cis-eqtls.html; GTEx data, https://gtexportal.org/home/datasets; 1000 Genomes phase 3 genotype data, https://www.cog-genomics.org/plink/2.0/resources#phase3_1kg; Neale’s lab UK Biobank round 2 GWAS summary-level data, http://www.nealelab.is/uk-biobank; Psychiatric Genomics Consortium (PGC) summary-level data, https://pgc.unc.edu/for-researchers/download-results/; DrugBank, https://www.drugbank.com; and Drugs.com, https://www.drugs.com. Source data are provided with this paper.

Code availability

Software used included METAL (https://genome.sph.umich.edu/wiki/METAL_Documentation), PLINK (https://www.cog-genomics.org/plink/), GenABEL (https://cran.r-project.org/src/contrib/Archive/GenABEL/), GCTA-GSMR (https://yanglab.westlake.edu.cn/software/gsmr/), PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk), MendelianRandomization (https://cran.r-project.org/web/packages/MendelianRandomization/index.html), coloc (https://chr1swallace.github.io/coloc/index.html), locuszoom (http://locuszoom.org/) and FUMA (https://fuma.ctglab.nl).

References

  1. Danaei, G. et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 6, 1–23 (2009).

    Google Scholar 

  2. Wang, X. et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ https://www.bmj.com/content/349/bmj.g4490 (2014).

  3. Mental Disorders (WHO, 2019); https://www.who.int/news-room/fact-sheets/detail/mental-disorders

  4. Mental Health (Ritchie, H. & Roser, M., 2020); https://ourworldindata.org/mental-health

  5. Hossain, M. M. et al. Epidemiology of mental health problems in COVID-19: a review. F1000Research https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7549174/ (2020).

  6. Greenberg, N. Mental health of health-care workers in the COVID-19 era. Nat. Rev. Nephrol. 16, 425–426 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Jones, E. A., Mitra, A. K. & Bhuiyan, A. R. Impact of COVID-19 on mental health in adolescents: a systematic review. Int. J. Environ. Res. Public Health 18, 2470 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Bearden, C. E., Reus, V. I. & Freimer, N. B. Why genetic investigation of psychiatric disorders is so difficult. Curr. Opin. Genet. Dev. 14, 280–286 (2004).

    PubMed  CAS  Google Scholar 

  9. Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177, 162–183 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Taylor, M. J. et al. Association of genetic risk factors for psychiatric disorders and traits of these disorders in a Swedish population twin sample. JAMA Psychiatry 76, 280–289 (2019).

    PubMed  Google Scholar 

  11. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Chames, P., Regenmortel, M. V., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Solomon, T. et al. Identification of common and rare genetic variation associated with plasma protein levels using whole exome sequencing and mass spectrometry. Circ. Genom. Precis. Med. 11, e002170 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat. Metab. 2, 1135–1148 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Westwood, S. et al. Plasma protein biomarkers for the prediction of CSF amyloid and tau and [18F]-flutemetamol PET scan result. Front. Aging Neurosci. 10, 409 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Dencker, M., Björgell, O. & Hlebowicz, J. Effect of food intake on 92 neurological biomarkers in plasma. Brain Behav. 7, e00747 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Jabbari, E. et al. Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 90, 768–773 (2019).

    PubMed  Google Scholar 

  19. Hillary, R. F. et al. Genome and epigenome wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936. Nat. Commun. 10, 3160 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. Harris, S. E. et al. Neurology-related protein biomarkers are associated with cognitive ability and brain volume in older age. Nat. Commun. 11, 800 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Rodrigues-Amorim, D. et al. Plasma β-III tubulin, neurofilament light chain and glial fibrillary acidic protein are associated with neurodegeneration and progression in schizophrenia. Sci. Rep. 10, 1–10 (2020).

    Google Scholar 

  22. Sandberg, J. V. et al. Proteins associated with future suicide attempts in bipolar disorder: a large-scale biomarker discovery study. Mol. Psychiatry 27, 3857–3863 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Folkersen, L. et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genet. 13, e1006706 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Wingo, A. P. et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer’s disease pathogenesis. Nat. Genet. 53, 143–146 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Jensen, S. B. et al. Discovery of novel plasma biomarkers for future incident venous thromboembolism by untargeted synchronous precursor selection mass spectrometry proteomics. J. Thromb. Haemost. 16, 1763 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Assarsson, E. et al. Homogenous 96-plex pea immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9, e95192 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).

    PubMed  PubMed Central  Google Scholar 

  31. Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).

    PubMed  CAS  Google Scholar 

  32. Bulik-Sullivan, B. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic correlations across human complex traits. Nat. Genet. 52, 859–864 (2020).

    PubMed  CAS  Google Scholar 

  35. Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296 (2007).

    PubMed  CAS  Google Scholar 

  36. Staley, J. R. et al. PhenoScanner: a database of human genotype–phenotype associations. Bioinformatics 32, 3207–3209 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Kamat, M. A. et al. PhenoScanner v2: an expanded tool for searching human genotype–phenotype associations. Bioinformatics 35, 4851–4853 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Png, G. et al. Mapping the serum proteome to neurological diseases using whole genome sequencing. Nat. Commun. 12, 7042 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B Stat. Methodol. 82, 1273–1300 (2020).

    PubMed  PubMed Central  Google Scholar 

  42. Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 17, e1009440 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Bretherick, A. D. et al. Linking protein to phenotype with Mendelian randomization detects 38 proteins with causal roles in human diseases and traits. PLoS Genet. 16, e1008785 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Molica, M. et al. Cd33 expression and gentuzumab ozogamicin in acute myeloid leukemia: two sides of the same coin. Cancers https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268215/ (2021).

  47. Tomoda, F., Nitta, A., Sugimori, H., Koike, T. & Kinugawa, K. Plasma and urinary levels of nerve growth factor are elevated in primary hypertension. Int. J. Hypertens. 2022, 3003269 (2022).

    PubMed  PubMed Central  Google Scholar 

  48. Knardahl, S. Cardiovascular psychophysiology. Ann. Med. 32, 329–335 (2000).

    PubMed  CAS  Google Scholar 

  49. Ioannidis, K., Askelund, A. D., Kievit, R. A. & Harmelen, A. L. V. The complex neurobiology of resilient functioning after childhood maltreatment. BMC Med. 18, 1–16 (2020).

    Google Scholar 

  50. McLaughlin, K. A., Colich, N. L., Rodman, A. M. & Weissman, D. G. Mechanisms linking childhood trauma exposure and psychopathology: a transdiagnostic model of risk and resilience. BMC Med. 18, 1–11 (2020).

    Google Scholar 

  51. Fried, E. I. & Robinaugh, D. J. Systems all the way down: embracing complexity in mental health research. BMC Med. 18, 1–4 (2020).

    Google Scholar 

  52. Fleshner, M., Frank, M. & Maier, S. F. Danger signals and inflammasomes: stress-evoked sterile inflammation in mood disorders. Neuropsychopharmacology 42, 36–45 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Bauer, M. E. & Teixeira, A. L. Inflammation in psychiatric disorders: what comes first? Ann. N. Y. Acad. Sci. 1437, 57–67 (2019).

    PubMed  CAS  Google Scholar 

  54. Liu, Y.-L. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 4309 (2014).

    PubMed  CAS  Google Scholar 

  55. Burgess, S., Foley, C. N., Allara, E., Staley, J. R. & Howson, J. M. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat. Commun. 11, 376 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Slob, E. A. & Burgess, S. A comparison of robust Mendelian randomization methods using summary data. Genet. Epidemiol. 44, 313–329 (2020).

    PubMed  PubMed Central  Google Scholar 

  57. Smith, G. D. & Ebrahim, S. Mendelian randomization: prospects, potentials, and limitations. Int. J. Epidemiol. 33, 30–42 (2004).

    PubMed  Google Scholar 

  58. Gill, D. et al. Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Res. 6, 24 (2021).

    Google Scholar 

  59. Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Primers 2, 1–21 (2022).

    Google Scholar 

  60. Heurich, M., Föcking, M., Mongan, D., Cagney, G. & Cotter, D. R. Dysregulation of complement and coagulation pathways: emerging mechanisms in the development of psychosis. Mol. Psychiatry 27, 127–140 (2022).

    PubMed  Google Scholar 

  61. Yang, Y. et al. Altered levels of acute phase proteins in the plasma of patients with schizophrenia. Anal. Chem. 78, 3571–3576 (2006).

    PubMed  CAS  Google Scholar 

  62. Levin, Y. et al. Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol. Psychiatry 15, 1088–1100 (2010).

    PubMed  CAS  Google Scholar 

  63. Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M. & Mondelli, V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 21, 642–649 (2016).

    PubMed  CAS  Google Scholar 

  64. Varatharaj, A. & Galea, I. The blood–brain barrier in systemic inflammation. Brain Behav. Immun. 60, 1–12 (2017).

    PubMed  CAS  Google Scholar 

  65. Najjar, S. et al. Neurovascular unit dysfunction and blood–brain barrier hyperpermeability contribute to schizophrenia neurobiology: a theoretical integration of clinical and experimental evidence. Front. Psychiatry https://pubmed.ncbi.nlm.nih.gov/28588507/ (2017).

  66. Sharapov, S. Z. et al. Defining the genetic control of human blood plasma N-glycome using genome-wide association study. Hum. Mol. Genet. 28, 2062 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Sharapov, S. Z. et al. Replication of 15 loci involved in human plasma protein N-glycosylation in 4802 samples from four cohorts. Glycobiology 31, 82 (2021).

    PubMed  CAS  Google Scholar 

  68. Shen, X. et al. Multivariate discovery and replication of five novel loci associated with immunoglobulin G N-glycosylation. Nat. Commun. http://www.research.ed.ac.uk/portal/files/43181419/Multivariate_discovery_and_replication_of_five_novel_loci_associated_with_Immunoglobulin_G_N_glycosylation.pdf (2017).

  69. Zhao, J. H. et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat. Immunol. 24, 1540–1551 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Yang, C. et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 24, 1302–1312 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Watanabe, K., Taskesen, E., Bochoven, A. V. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. FUMA: functional mapping and annotation of genetic associations. Eur. Neuropsychopharmacol. 29, S789–S790 (2019).

    Google Scholar 

  74. Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37, 3017–3018 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Pirinen, M., Donnelly, P. & Spencer, C. C. A. Efficient computation with a linear mixed model on large-scale data sets with applications to genetic studies. Ann. Appl. Stat. 7, 369–390 (2013).

    Google Scholar 

Download references

Acknowledgements

X.S. was in receipt of a National Key Research and Development Program grant (numbers 2022YFF1202100 and 2022YFF1202105), a National Natural Science Foundation of China (NSFC) grant (number 12171495), a Natural Science Foundation of Guangdong Province grant (number 2021A1515010866) and Swedish Research Council (Vetenskapsrådet) grants (numbers 2017-02543 and 2022-01309). P.R.H.J.T. and J.F.W. acknowledge support from the Medical Research Council Human Genetics Unit Program grant ‘Quantitative Traits in Health and Disease’ (U. MC_UU_00007/10). The work of D.M., A.T., S.S. and Y.S.A. was supported by the Research Program at the Moscow State University (MSU) Institute for Artificial Intelligence. The work from X.F. was supported by the China Postdoctoral Science Foundation (number 2023M740690 and 2024T170174). The work from T.L. was supported by the China Postdoctoral Science Foundation (number 2023M740696). The work from C.K. and A.P.R. was supported in part by NIH grant R01-HL136574. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper. We thank the members of the SCALLOP Consortium of genome-wide association studies for making their data available. Cohort-specific acknowledgements are given in Supplementary Information.

Author information

Authors and Affiliations

Authors

Contributions

X.S., P.N. and J.F.W. initiated and coordinated the study. L.R. performed the GWAS meta-analysis. J.C. conducted the colocalization analysis. Z.Y. conducted the Mendelian randomization analysis. R.Z. performed the drug target investigations. P.R.H.J.T., X.F., T.L., F.T., E.L.T., P.N. and X.S. contributed to the analysis pipeline. Y.Y. contributed to the cross-referencing prediction analysis. D.M. and A.T. contributed to the colocalization data processing and analysis. S.S. and Y.S.A. were involved in planning and supervising the work of D.M. and A.T. S.M.-W., M.D.M., B.P.P., A.J., R.F.H., E.W., S.K., S.A., L.P., Y.H., G.P., C.K., J.E.P., U.G., S.E.H., N.J.W., C. Lagging, M.A.I., A. Gilly, A. Göteson, M.K., E.T., J.H., A.P.R., G.D., E.Z., M.L., C.M.V.D., C.J., C. Langenberg, I.J.D., R.E.M., S.E., A.S.B. and A.M. contributed to the cohort-level analysis. L.R., J.C., Z.Y., R.Z., P.N. and X.S. wrote the paper. All authors approved the submitted version of the paper.

Corresponding author

Correspondence to Xia Shen.

Ethics declarations

Competing interests

P.R.H.J.T. is a salaried employee of BioAge Labs, Inc. R.E.M. has received a speaker fee from Illumina, is an advisor to the Epigenetic Clock Development Foundation and is a scientific consultant for Optima Partners. E.W. is now an employee of AstraZeneca. Y.S.A. is now an employee of GSK. A.S.B. has received grants from AstraZeneca, Bayer, Biogen, BioMarin and Sanofi. A.M. is an employee of Pfizer. X.S. is the founder of Quantix BioSciences and has received a speaker fee from Olink Proteomics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Michael Johnson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

IRBs/Ethics Statement, cohort-specific acknowledgements, analysis plan for the GWAS meta-analysis, Supplementary tables descriptions 1–30 and Figs. 1–11.

Reporting Summary

Peer Review File

Supplementary Tables 1–30

The content of these tables is described in the Supplementary Information file.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repetto, L., Chen, J., Yang, Z. et al. The genetic landscape of neuro-related proteins in human plasma. Nat Hum Behav 8, 2222–2234 (2024). https://doi.org/10.1038/s41562-024-01963-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-024-01963-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载