Chat models (Classic)¶
langchain-classic documentation
These docs cover the langchain-classic package. This package will be maintained for security vulnerabilities until December 2026. Users are encouraged to migrate to the langchain package for the latest features and improvements. See docs for langchain
langchain_classic.chat_models
¶
Chat Models are a variation on language models.
While Chat Models use language models under the hood, the interface they expose is a bit different. Rather than expose a "text in, text out" API, they expose an interface where "chat messages" are the inputs and outputs.
| FUNCTION | DESCRIPTION |
|---|---|
init_chat_model |
Initialize a chat model from any supported provider using a unified interface. |
init_chat_model
¶
init_chat_model(
model: str | None = None,
*,
model_provider: str | None = None,
configurable_fields: Literal["any"] | list[str] | tuple[str, ...] | None = None,
config_prefix: str | None = None,
**kwargs: Any,
) -> BaseChatModel | _ConfigurableModel
Initialize a chat model from any supported provider using a unified interface.
Two main use cases:
- Fixed model – specify the model upfront and get back a ready-to-use chat model.
- Configurable model – choose to specify parameters (including model name) at
runtime via
config. Makes it easy to switch between models/providers without changing your code
Note
Requires the integration package for the chosen model provider to be installed.
See the model_provider parameter below for specific package names
(e.g., pip install langchain-openai).
Refer to the provider integration's API reference
for supported model parameters to use as **kwargs.
| PARAMETER | DESCRIPTION |
|---|---|
model
|
The name or ID of the model, e.g. You can also specify model and model provider in a single argument using
Will attempt to infer The following providers will be inferred based on these model prefixes:
TYPE:
|
model_provider
|
The model provider if not specified as part of the model arg (see above). Supported
TYPE:
|
configurable_fields
|
Which model parameters are configurable at runtime:
Fields are assumed to have If If Security note Setting Make sure that if you're accepting untrusted configurations that you
enumerate the
TYPE:
|
config_prefix
|
Optional prefix for configuration keys. Useful when you have multiple configurable models in the same application. If If
TYPE:
|
**kwargs
|
Additional model-specific keyword args to pass to the underlying
chat model's
Refer to the specific model provider's integration reference for all available parameters.
TYPE:
|
| RETURNS | DESCRIPTION |
|---|---|
BaseChatModel | _ConfigurableModel
|
A |
| RAISES | DESCRIPTION |
|---|---|
ValueError
|
If |
ImportError
|
If the model provider integration package is not installed. |
Initialize a non-configurable model
# pip install langchain langchain-openai langchain-anthropic langchain-google-vertexai
from langchain_classic.chat_models import init_chat_model
o3_mini = init_chat_model("openai:o3-mini", temperature=0)
claude_sonnet = init_chat_model("anthropic:claude-sonnet-4-5-20250929", temperature=0)
gemini_2-5_flash = init_chat_model(
"google_vertexai:gemini-2.5-flash", temperature=0
)
o3_mini.invoke("what's your name")
claude_sonnet.invoke("what's your name")
gemini_2-5_flash.invoke("what's your name")
Partially configurable model with no default
# pip install langchain langchain-openai langchain-anthropic
from langchain_classic.chat_models import init_chat_model
# (We don't need to specify configurable=True if a model isn't specified.)
configurable_model = init_chat_model(temperature=0)
configurable_model.invoke(
"what's your name", config={"configurable": {"model": "gpt-4o"}}
)
# Use GPT-4o to generate the response
configurable_model.invoke(
"what's your name",
config={"configurable": {"model": "claude-sonnet-4-5-20250929"}},
)
Fully configurable model with a default
# pip install langchain langchain-openai langchain-anthropic
from langchain_classic.chat_models import init_chat_model
configurable_model_with_default = init_chat_model(
"openai:gpt-4o",
configurable_fields="any", # This allows us to configure other params like temperature, max_tokens, etc at runtime.
config_prefix="foo",
temperature=0,
)
configurable_model_with_default.invoke("what's your name")
# GPT-4o response with temperature 0 (as set in default)
configurable_model_with_default.invoke(
"what's your name",
config={
"configurable": {
"foo_model": "anthropic:claude-sonnet-4-5-20250929",
"foo_temperature": 0.6,
}
},
)
# Override default to use Sonnet 4.5 with temperature 0.6 to generate response
Bind tools to a configurable model
You can call any chat model declarative methods on a configurable model in the same way that you would with a normal model:
# pip install langchain langchain-openai langchain-anthropic
from langchain_classic.chat_models import init_chat_model
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(
..., description="The city and state, e.g. San Francisco, CA"
)
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(
..., description="The city and state, e.g. San Francisco, CA"
)
configurable_model = init_chat_model(
"gpt-4o", configurable_fields=("model", "model_provider"), temperature=0
)
configurable_model_with_tools = configurable_model.bind_tools(
[
GetWeather,
GetPopulation,
]
)
configurable_model_with_tools.invoke(
"Which city is hotter today and which is bigger: LA or NY?"
)
# Use GPT-4o
configurable_model_with_tools.invoke(
"Which city is hotter today and which is bigger: LA or NY?",
config={"configurable": {"model": "claude-sonnet-4-5-20250929"}},
)
# Use Sonnet 4.5
Behavior changed in langchain 0.2.8
Support for configurable_fields and config_prefix added.
Behavior changed in langchain 0.2.12
Support for Ollama via langchain-ollama package added
(langchain_ollama.ChatOllama). Previously,
the now-deprecated langchain-community version of Ollama was imported
(langchain_community.chat_models.ChatOllama).
Support for AWS Bedrock models via the Converse API added
(model_provider="bedrock_converse").
Behavior changed in langchain 0.3.5
Out of beta.
Behavior changed in langchain 0.3.19
Support for Deepseek, IBM, Nvidia, and xAI models added.