่ฟ™ๆ˜ฏindexlocๆไพ›็š„ๆœๅŠก๏ผŒไธ่ฆ่พ“ๅ…ฅไปปไฝ•ๅฏ†็ 
Skip to main content
Open on GitHub

Nebius

All functionality related to Nebius AI Studio

Nebius AI Studio provides API access to a wide range of state-of-the-art large language models and embedding models for various use cases.

Installation and Setupโ€‹

The Nebius integration can be installed via pip:

pip install langchain-nebius

To use Nebius AI Studio, you'll need an API key which you can obtain from Nebius AI Studio. The API key can be passed as an initialization parameter api_key or set as the environment variable NEBIUS_API_KEY.

import os
os.environ["NEBIUS_API_KEY"] = "YOUR-NEBIUS-API-KEY"

Available Modelsโ€‹

The full list of supported models can be found in the Nebius AI Studio Documentation.

Chat modelsโ€‹

ChatNebiusโ€‹

The ChatNebius class allows you to interact with Nebius AI Studio's chat models.

See a usage example.

from langchain_nebius import ChatNebius

# Initialize the chat model
chat = ChatNebius(
model="Qwen/Qwen3-30B-A3B-fast", # Choose from available models
temperature=0.6,
top_p=0.95
)

Embedding modelsโ€‹

NebiusEmbeddingsโ€‹

The NebiusEmbeddings class allows you to generate vector embeddings using Nebius AI Studio's embedding models.

See a usage example.

from langchain_nebius import NebiusEmbeddings

# Initialize embeddings
embeddings = NebiusEmbeddings(
model="BAAI/bge-en-icl" # Default embedding model
)

Retrieversโ€‹

NebiusRetrieverโ€‹

The NebiusRetriever enables efficient similarity search using embeddings from Nebius AI Studio. It leverages high-quality embedding models to enable semantic search over documents.

See a usage example.

from langchain_core.documents import Document
from langchain_nebius import NebiusEmbeddings, NebiusRetriever

# Create sample documents
docs = [
Document(page_content="Paris is the capital of France"),
Document(page_content="Berlin is the capital of Germany"),
]

# Initialize embeddings
embeddings = NebiusEmbeddings()

# Create retriever
retriever = NebiusRetriever(
embeddings=embeddings,
docs=docs,
k=2 # Number of documents to return
)
API Reference:Document

Toolsโ€‹

NebiusRetrievalToolโ€‹

The NebiusRetrievalTool allows you to create a tool for agents based on the NebiusRetriever.

from langchain_nebius import NebiusEmbeddings, NebiusRetriever, NebiusRetrievalTool
from langchain_core.documents import Document

# Create sample documents
docs = [
Document(page_content="Paris is the capital of France and has the Eiffel Tower"),
Document(page_content="Berlin is the capital of Germany and has the Brandenburg Gate"),
]

# Create embeddings and retriever
embeddings = NebiusEmbeddings()
retriever = NebiusRetriever(embeddings=embeddings, docs=docs)

# Create retrieval tool
tool = NebiusRetrievalTool(
retriever=retriever,
name="nebius_search",
description="Search for information about European capitals"
)
API Reference:Document