这是indexloc提供的服务,不要输入任何密码
Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Frontiers of Physics
  3. Article

STCF conceptual design report (Volume 1): Physics & detector

  • Report
  • Open access
  • Published: 24 November 2023
  • Volume 19, article number 14701, (2024)
  • Cite this article

You have full access to this open access article

Download PDF
Frontiers of Physics
STCF conceptual design report (Volume 1): Physics & detector
Download PDF
  • M. Achasov3,
  • X. C. Ai82,
  • L. P. An54,
  • R. Aliberti38,
  • Q. An63,72,83,
  • X. Z. Bai63,72,83,
  • Y. Bai62,
  • O. Bakina39,
  • A. Barnyakov3,50,
  • V. Blinov3,50,51,
  • V. Bobrovnikov3,51,
  • D. Bodrov23,60,
  • A. Bogomyagkov3,
  • A. Bondar3,
  • I. Boyko39,
  • Z. H. Bu73,
  • F. M. Cai20,
  • H. Cai77,
  • J. J. Cao20,
  • Q. H. Cao54,
  • X. Cao33,
  • Z. Cao63,72,83,
  • Q. Chang20,
  • K. T. Chao54,
  • D. Y. Chen62,
  • H. Chen81,
  • H. X. Chen62,
  • J. F. Chen58,
  • K. Chen6,
  • L. L. Chen20,
  • P. Chen78,
  • S. L. Chen6,
  • S. M. Chen66,
  • S. Chen69,
  • S. P. Chen69,
  • W. Chen64,
  • X. Chen74,
  • X. F. Chen58,
  • X. R. Chen33,
  • Y. Chen32,
  • Y. Q. Chen36,
  • H. Y. Cheng34,
  • J. Cheng48,
  • S. Cheng28,
  • T. G. Cheng2,
  • J. P. Dai80,
  • L. Y. Dai28,
  • X. C. Dai54,
  • D. Dedovich39,
  • A. Denig19,38,
  • I. Denisenko39,
  • J. M. Dias4,
  • D. Z. Ding58,
  • L. Y. Dong32,
  • W. H. Dong63,72,83,
  • V. Druzhinin3,
  • D. S. Du63,72,83,
  • Y. J. Du77,
  • Z. G. Du41,
  • L. M. Duan33,
  • D. Epifanov3,
  • Y. L. Fan77,
  • S. S. Fang32,
  • Z. J. Fang63,72,83,
  • G. Fedotovich3,
  • C. Q. Feng63,72,83,
  • X. Feng54,
  • Y. T. Feng63,72,83,
  • J. L. Fu69,
  • J. Gao59,
  • Y. N. Gao54,
  • P. S. Ge73,
  • C. Q. Geng15,
  • L. S. Geng2,
  • A. Gilman71,
  • L. Gong43,
  • T. Gong21,
  • B. Gou33,
  • W. Gradl38,
  • J. L. Gu63,72,83,
  • A. Guevara4,
  • L. C. Gui26,
  • A. Q. Guo33,
  • F. K. Guo4,69,2,
  • J. C. Guo63,72,83,
  • J. Guo59,
  • Y. P. Guo11,
  • Z. H. Guo16,
  • A. Guskov39,
  • K. L. Han69,
  • L. Han63,72,83,
  • M. Han63,72,83,
  • X. Q. Hao20,
  • J. B. He69,
  • S. Q. He63,72,83,
  • X. G. He59,
  • Y. L. He20,
  • Z. B. He33,
  • Z. X. Heng20,
  • B. L. Hou63,72,83,
  • T. J. Hou74,
  • Y. R. Hou69,
  • C. Y. Hu74,
  • H. M. Hu32,
  • K. Hu57,
  • R. J. Hu33,
  • W. H. Hu54,
  • X. H. Hu9,
  • Y. C. Hu49,
  • J. Hua61,
  • G. S. Huang63,72,83,
  • J. S. Huang47,
  • M. Huang69,
  • Q. Y. Huang69,
  • W. Q. Huang69,
  • X. T. Huang57,
  • X. J. Huang33,
  • Y. B. Huang14,
  • Y. S. Huang64,
  • N. Hüsken38,
  • V. Ivanov3,
  • Q. P. Ji20,
  • J. J. Jia77,
  • S. Jia62,
  • Z. K. Jia63,72,83,
  • H. B. Jiang77,
  • J. Jiang57,
  • S. Z. Jiang14,
  • J. B. Jiao57,
  • Z. Jiao24,
  • H. J. Jing69,
  • X. L. Kang8,
  • X. S. Kang43,
  • B. C. Ke82,
  • M. Kenzie5,
  • A. Khoukaz76,
  • I. Koop3,50,51,
  • E. Kravchenko3,51,
  • A. Kuzmin3,
  • Y. Lei60,
  • E. Levichev3,
  • C. H. Li42,
  • C. Li55,
  • D. Y. Li33,
  • F. Li63,72,83,
  • G. Li55,
  • G. Li15,
  • H. B. Li32,69,
  • H. Li63,72,83,
  • H. N. Li61,
  • H. J. Li20,
  • H. L. Li27,
  • J. M. Li63,72,83,
  • J. Li32,
  • L. Li56,
  • L. Li59,
  • L. Y. Li63,72,83,
  • N. Li64,
  • P. R. Li41,
  • R. H. Li30,
  • S. Li59,
  • T. Li57,
  • W. J. Li20,
  • X. Li33,
  • X. H. Li74,
  • X. Q. Li6,
  • X. H. Li63,72,83,
  • Y. Li79,
  • Y. Y. Li72,
  • Z. J. Li33,
  • H. Liang63,72,83,
  • J. H. Liang61,
  • Y. T. Liang33,
  • G. R. Liao13,
  • L. Z. Liao25,
  • Y. Liao61,
  • C. X. Lin69,
  • D. X. Lin33,
  • X. S. Lin63,72,83,
  • B. J. Liu32,
  • C. W. Liu15,
  • D. Liu63,72,83,
  • F. Liu6,
  • G. M. Liu61,
  • H. B. Liu14,
  • J. Liu54,
  • J. J. Liu74,
  • J. B. Liu63,72,83,
  • K. Liu41,
  • K. Y. Liu43,
  • K. Liu59,
  • L. Liu63,72,83,
  • Q. Liu69,
  • S. B. Liu63,72,83,
  • T. Liu11,
  • X. Liu41,
  • Y. W. Liu63,72,83,
  • Y. Liu82,
  • Y. L. Liu63,72,83,
  • Z. Q. Liu57,
  • Z. Y. Liu41,
  • Z. W. Liu45,
  • I. Logashenko3,
  • Y. Long63,72,83,
  • C. G. Lu33,
  • J. X. Lu2,
  • N. Lu63,72,83,
  • Q. F. Lü26,
  • Y. Lu7,
  • Y. Lu69,
  • Z. Lu62,
  • P. Lukin3,
  • F. J. Luo74,
  • T. Luo11,
  • X. F. Luo6,
  • H. J. Lyu24,
  • X. R. Lyu69,
  • J. P. Ma35,
  • P. Ma33,
  • Y. Ma15,
  • Y. M. Ma33,
  • F. Maas19,38,
  • S. Malde71,
  • D. Matvienko3,
  • Z. X. Meng70,
  • R. Mitchell29,
  • A. Nefediev40,
  • Y. Nefedov39,
  • S. L. Olsen22,53,
  • Q. Ouyang32,63,83,
  • P. Pakhlov23,
  • G. Pakhlova23,52,
  • X. Pan60,
  • Y. Pan62,
  • E. Passemar29,65,67,
  • Y. P. Pei63,72,83,
  • H. P. Peng63,72,83,
  • L. Peng27,
  • X. Y. Peng8,
  • X. J. Peng41,
  • K. Peters12,
  • S. Pivovarov3,
  • E. Pyata3,
  • B. B. Qi63,72,83,
  • Y. Q. Qi63,72,83,
  • W. B. Qian69,
  • Y. Qian33,
  • C. F. Qiao69,
  • J. J. Qin74,
  • J. J. Qin63,72,83,
  • L. Q. Qin13,
  • X. S. Qin57,
  • T. L. Qiu33,
  • J. Rademacker68,
  • C. F. Redmer38,
  • H. Y. Sang63,72,83,
  • M. Saur54,
  • W. Shan26,
  • X. Y. Shan63,72,83,
  • L. L. Shang20,
  • M. Shao63,72,83,
  • L. Shekhtman3,
  • C. P. Shen11,
  • J. M. Shen28,
  • Z. T. Shen63,72,83,
  • H. C. Shi63,72,83,
  • X. D. Shi63,72,83,
  • B. Shwartz3,
  • A. Sokolov3,
  • J. J. Song20,
  • W. M. Song36,
  • Y. Song63,72,83,
  • Y. X. Song10,
  • A. Sukharev3,51,
  • J. F. Sun20,
  • L. Sun77,
  • X. M. Sun6,
  • Y. J. Sun63,72,83,
  • Z. P. Sun33,
  • J. Tang64,
  • S. S. Tang63,72,83,
  • Z. B. Tang63,72,83,
  • C. H. Tian63,72,83,
  • J. S. Tian78,
  • Y. Tian33,
  • Y. Tikhonov3,
  • K. Todyshev3,51,
  • T. Uglov52,
  • V. Vorobyev3,
  • B. D. Wan15,
  • B. L. Wang69,
  • B. Wang63,72,83,
  • D. Y. Wang54,
  • G. Y. Wang21,
  • G. L. Wang17,
  • H. L. Wang61,
  • J. Wang49,
  • J. H. Wang63,72,83,
  • J. C. Wang63,72,83,
  • M. L. Wang32,
  • R. Wang63,72,83,
  • R. Wang33,
  • S. B. Wang59,
  • W. Wang59,
  • W. P. Wang63,72,83,
  • X. C. Wang20,
  • X. D. Wang74,
  • X. L. Wang63,72,83,
  • X. L. Wang20,
  • X. P. Wang2,
  • X. F. Wang41,
  • Y. D. Wang48,
  • Y. P. Wang6,
  • Y. Q. Wang17,
  • Y. L. Wang20,
  • Y. G. Wang63,72,83,
  • Z. Y. Wang63,72,83,
  • Z. Y. Wang73,
  • Z. L. Wang69,
  • Z. G. Wang48,
  • D. H. Wei13,
  • X. L. Wei33,
  • X. M. Wei49,
  • Q. G. Wen1,
  • X. J. Wen33,
  • G. Wilkinson71,
  • B. Wu63,72,83,
  • J. J. Wu69,
  • L. Wu44,
  • P. Wu62,
  • T. W. Wu15,
  • Y. S. Wu63,72,83,
  • L. Xia63,72,83,
  • T. Xiang54,
  • C. W. Xiao7,13,
  • D. Xiao41,
  • M. Xiao74,
  • K. P. Xie2,
  • Y. H. Xie6,
  • Y. Xing9,
  • Z. Z. Xing32,
  • X. N. Xiong7,
  • F. R. Xu37,
  • J. Xu82,
  • L. L. Xu63,72,83,
  • Q. N. Xu30,
  • X. C. Xu63,72,83,
  • X. P. Xu60,
  • Y. C. Xu79,
  • Y. P. Xu48,
  • Y. Xu43,
  • Z. Z. Xu63,72,83,
  • D. W. Xuan63,72,83,
  • F. F. Xue49,
  • L. Yan11,
  • M. J. Yan4,
  • W. B. Yan63,72,83,
  • W. C. Yan82,
  • X. S. Yan20,
  • B. F. Yang20,
  • C. Yang57,
  • H. J. Yang59,
  • H. R. Yang33,
  • H. T. Yang63,72,83,
  • J. F. Yang63,72,83,
  • S. L. Yang69,
  • Y. D. Yang20,
  • Y. H. Yang69,
  • Y. S. Yang33,
  • Y. L. Yang20,
  • Z. W. Yang54,
  • Z. Y. Yang63,72,83,
  • D. L. Yao28,
  • H. Yin6,
  • X. H. Yin33,
  • N. Yokozaki81,
  • S. Y. You41,
  • Z. Y. You64,
  • C. X. Yu46,
  • F. S. Yu41,
  • G. L. Yu48,
  • H. L. Yu63,72,83,
  • J. S. Yu28,
  • J. Q. Yu28,
  • L. Yuan2,
  • X. B. Yuan6,
  • Z. Y. Yuan54,
  • Y. F. Yue20,
  • M. Zeng66,
  • S. Zeng74,
  • A. L. Zhang63,72,83,
  • B. W. Zhang6,
  • G. Y. Zhang20,
  • G. Q. Zhang31,
  • H. J. Zhang63,72,83,
  • H. B. Zhang69,
  • J. Y. Zhang69,
  • J. L. Zhang21,
  • J. Zhang64,
  • L. Zhang57,
  • L. M. Zhang66,
  • Q. A. Zhang2,
  • R. Zhang75,
  • S. L. Zhang28,
  • T. Zhang59,
  • X. Zhang4,
  • Y. Zhang63,72,83,
  • Y. J. Zhang2,
  • Y. X. Zhang54,
  • Y. T. Zhang82,
  • Y. F. Zhang63,72,83,
  • Y. C. Zhang62,
  • Y. Zhang18,
  • Y. Zhang74,
  • Y. M. Zhang64,
  • Y. L. Zhang63,72,83,
  • Z. H. Zhang74,
  • Z. Y. Zhang77,
  • Z. Y. Zhang63,72,83,
  • H. Y. Zhao33,
  • J. Zhao21,
  • L. Zhao63,72,83,
  • M. G. Zhao46,
  • Q. Zhao32,
  • R. G. Zhao49,
  • R. P. Zhao69,
  • Y. X. Zhao33,
  • Z. G. Zhao63,72,83,
  • Z. X. Zhao30,
  • A. Zhemchugov39,
  • B. Zheng74,
  • L. Zheng8,
  • Q. B. Zheng73,
  • R. Zheng49,
  • Y. H. Zheng69,
  • X. H. Zhong26,
  • H. J. Zhou20,
  • H. Q. Zhou62,
  • H. Zhou63,72,83,
  • S. H. Zhou30,
  • X. Zhou77,
  • X. K. Zhou6,
  • X. P. Zhou2,
  • X. R. Zhou63,72,83,
  • Y. L. Zhou15,
  • Y. Zhou63,72,83,
  • Y. X. Zhou69,
  • Z. Y. Zhou62,
  • J. Y. Zhu21,
  • K. Zhu32,
  • R. D. Zhu60,
  • R. L. Zhu44,
  • S. H. Zhu54,
  • Y. C. Zhu63,72,83,
  • Z. A. Zhu63,72,83,
  • V. Zhukova40,
  • V. Zhulanov3,
  • B. S. Zou4,69,33 &
  • …
  • Y. B. Zuo42 
  • 12k Accesses

  • 2 Altmetric

  • Explore all metrics

Abstract

The super τ-charm facility (STCF) is an electron–positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

Article PDF

Download to read the full article text

Similar content being viewed by others

Testing non-standard sources of parity violation in jets at the LHC, trialled with CMS Open Data

Article Open access 16 December 2019

Precise measurement of CP violating τ EDM through e+e− → γ*, ψ(2s) → τ+τ−

Article Open access 01 April 2025

Project of Super Charm-Tau Factory

Article 01 November 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Accelerator Physics
  • Experimental Particle Physics
  • Experimental Nuclear Physics
  • High-Energy Astrophysics
  • Plasma-based Accelerators
  • Theoretical Particle Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References and notes

  1. L. H. Hoddeson, L. Brown, M. Riordan, and M. Dresden (Eds.), The Rise of the standard model: Particle physics in the 1960s and 1970s, Proceedings, Conference, Stanford, USA, June 24–27, 1992 (1997)

  2. G. S. Abrams, et al., The mark-II detector for the SLC, Nucl. Instrum. Meth. A 281, 55 (1989)

    Article  ADS  Google Scholar 

  3. D. Bernstein, et al., The mark-III spectrometer, Nucl. Instrum. Meth. A 226, 301 (1984)

    Article  ADS  Google Scholar 

  4. J. E. Augustin, et al., Dm2: A magnetic detector for the Orsay storage ring DCI, Phys. Scripta 23, 623 (1981)

    Article  ADS  Google Scholar 

  5. D. Asner (CLEO), The CLEO-c research program, AIP Conf. Proc. 722, 82 (2004), arXiv: hep-ex/0312034

    Article  ADS  Google Scholar 

  6. J. Z. Bai, et al., The BES detector, Nucl. Instrum. Meth. A 344, 319 (1994)

    Article  ADS  Google Scholar 

  7. J. Z. Bai, et al., Measurement of the mass of the tau lepton, Phys. Rev. Lett. 69, 3021 (1992)

    Article  ADS  Google Scholar 

  8. M. Ablikim, et al. (BESIII), Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076

    Article  ADS  Google Scholar 

  9. J. Z. Bai, et al. (BES), Measurements of the cross section for e+e− → Hadrons at center-of-mass energies from 2 to 5 GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003

    Article  ADS  Google Scholar 

  10. J. Z. Bai, et al., Evidence for the leptonic decay D → μνμ, Phys. Lett. B 429, 188 (1998)

    Article  ADS  Google Scholar 

  11. J. Z. Bai, et al. (BES), Observation of a near-threshold enhancement in the pp̄ mass spectrum from radiative J/ψ → γ pp̄ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006

    Article  ADS  Google Scholar 

  12. M. Ablikim, et al. (BES), Observation of a resonance X(1835) in J/ψ → γπ+π−η′, Phys. Rev. Lett. 95, 262001 (2005), arXiv: hep-ex/0508025

    Article  ADS  Google Scholar 

  13. M. Ablikim, et al. (BESIII), Spin-parity analysis of pp̄ mass threshold structure in J/ψ and ψ (3686) radiative decays, Phys. Rev. Lett. 108, 112003 (2012), arXiv: 1112.0942

    Article  ADS  Google Scholar 

  14. M. Ablikim, et al. (BESIII), Observation of an anomalous line shape of the η′ π+π− mass spectrum near the pp̄ mass threshold in J/ψ → γη′ π+π−, Phys. Rev. Lett. 117, 042002 (2016), arXiv: 1603.09653

    Article  ADS  Google Scholar 

  15. M. Ablikim, et al. (BES), The sigma pole in J/ψ → ωπ+π−, Phys. Lett. B 598, 149 (2004), arXiv: hep-ex/0406038

    Google Scholar 

  16. M. Ablikim, et al. (BES), Observation of charged κ in J/ψ → K*(892)∓Ksπ±, K*(892)∓ → Ksπ∓ at BESII, Phys. Lett. B 698, 183 (2011), arXiv: 1008.4489

    Article  ADS  Google Scholar 

  17. C.-A. Zhang, in: 32nd International Conference on High Energy Physics (2004), pp 993–997

  18. M. Ablikim, et al. (BESIII), Design and construction of the BESIII detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960

    Article  ADS  Google Scholar 

  19. M. Ablikim, et al. (BESIII), Observation of an isoscalar resonance with exotic JPC = 1−+ quantum numbers in J/ψ→γηη′, Phys. Rev. Lett. 129, 192002 (2022), arXiv: 2202.00621 [hep-ex]

    Article  ADS  Google Scholar 

  20. M. Ablikim, et al. (BESIII), Partial wave analysis of J/ψ→γηη′, Phys. Rev. D 106, 072012 (2022), arXiv: 2202.00623 [hep-ex]

    Article  ADS  Google Scholar 

  21. D. Horn and J. Mandula, A model of mesons with constituent gluons, Phys. Rev. D 17, 898 (1978)

    Article  ADS  Google Scholar 

  22. M. Ablikim, et al. (BESIII Collaboration), Observation of a state X(2600) in the π+π−η′ system in the process J/ψ → γπ+π−η′, Phys. Rev. Lett. 129, 042001 (2022), arXiv: 2201.10796 [hep-ex]

    Article  ADS  Google Scholar 

  23. M. Ablikim, et al. (BESIII), First observation of η(1405) decays into f0(980)π0, Phys. Rev. Lett. 108, 182001 (2012), arXiv: 1201.2737

    Article  ADS  Google Scholar 

  24. M. Ablikim, et al. (BESIII), Observation of a 00 (980)−f0(980) mixing, Phys. Rev. Lett. 121, 022001 (2018), arXiv: 1802.00583

    Article  ADS  Google Scholar 

  25. N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, s*−δ0 mixing as the threshold phenomenon, Phys. Lett. B 88, 367 (1979)

    Article  ADS  Google Scholar 

  26. M. Ablikim, et al. (BESIII), Polarization and entanglement in baryon–antibaryon pair production in electron-positron annihilation, Nature Phys. 15, 631 (2019), arXiv: 1808.08917 [hep-ex]

    Article  ADS  Google Scholar 

  27. M. Ablikim, et al. (BESIII), Precise measurements of decay parameters and CP asymmetry with entangled Λ−Λ̄ pairs, Phys. Rev. Lett. 129, 131801 (2022), arXiv: 2204.11058 [hep-ex]

    Article  ADS  Google Scholar 

  28. M. Ablikim, et al. (BESIII), Probing CP symmetry and weak phases with entangled double- strange baryons, Nature 606, 64 (2022), arXiv: 2105.11155[hep-ex]

    Article  ADS  Google Scholar 

  29. M. Ablikim, et al. (BESIII), Analysis of D+ → K̄0e+νe and D+ → π0e+νe semileptonic decays, Phys. Rev. D 96, 012002 (2017), arXiv: 1703.09084

    Article  ADS  Google Scholar 

  30. M. Ablikim, et al. (BESIII), Study of dynamics of D0 → K−e+νe and D0 → π−e+νe decays, Phys. Rev. D 92, 072012 (2015), arXiv: 1508.07560

    Article  ADS  Google Scholar 

  31. M. Ablikim, et al. (BESIII), Determination of the pseudoscalar decay constant \({f_{{D_s}^ + }}\) via Ds+ → μ+νμ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890

    Article  ADS  Google Scholar 

  32. M. Ablikim, et al. (BESIII), Measurement of the Ds+ → ℓ+νℓ branching fractions and the decay constant fD+, Phys. Rev. D 94, 072004 (2016), arXiv: 1608.06732

    Article  ADS  Google Scholar 

  33. M. Ablikim, et al. (BESIII), Measurements of absolute hadronic branching fractions of the Λ+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380

    Article  ADS  Google Scholar 

  34. R. L. Workman, et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022)

    Google Scholar 

  35. M. Ablikim, et al. (BESIII), Measurement of the D → K−π+ strong phase difference in ψ/(3770) → D0D̄0, Phys. Lett. B 734, 227 (2014), arXiv: 1404.4691

    Article  ADS  Google Scholar 

  36. M. Ablikim, et al. (BESIII), Model-independent determination of the relative strong-phase difference between D0 and D̄0 → K 0S,L π+π− and its impact on the measurement of the ckm angle γ/ϕ3, Phys. Rev. D 101, 112002 (2020), arXiv: 2003.00091

    Article  ADS  Google Scholar 

  37. M. Ablikim, et al. (BESIII), Improved model-independent determination of the strong-phase difference between D0 and D̄0 → K 0S,L K+K− decays, Phys. Rev. D 102, 052008 (2020), arXiv: 2007.07959

    Article  ADS  Google Scholar 

  38. M. Ablikim, et al. (BESIII), Measurement of the Cross Section for e+e− →Hadrons at energies from 2.2324 to 3.6710 GeV, Phys. Rev. Lett. 128, 062004 (2022), arXiv: 2112.11728 [hep-ex]

    Article  ADS  Google Scholar 

  39. M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the standard model predictions of the muon g -2 and α(mz2) using newest hadronic cross-section data, Eur. Phys. J. C 77, 827 (2017), arXiv: 1706.09436

    Article  ADS  Google Scholar 

  40. M. Ablikim, et al. (BESIII), Measurement of the ππ cross section between 600 and 900 mev using initial state radiation, Phys. Lett. B 753, 629 (2016) [Erratum: Phys. Lett. B 812, 135982 (2021)], arXiv: 1507.08188

    Article  ADS  Google Scholar 

  41. J. Grange, et al. (Muon g-2), Muon (g-2) technical design report, FERMILAB-FN-0992-E, FERMILAB-DESIGN-2014-02 (2015–01), arXiv: 1501.06858

  42. B. Abi, et al. (Muon g-2), Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281[hep-ex]

    Article  ADS  Google Scholar 

  43. T. Mibe (J-PARC g-2), New g-2 experiment at J-PARC, Chin. Phys. C 34, 745 (2010)

    Article  ADS  Google Scholar 

  44. M. Ablikim, et al. (BESIII), Measurement of proton electromagnetic form factors in e+e− → pp̄ in the energy region 2.00–3.08 GeV, Phys. Rev. Lett. 124, 042001 (2020), arXiv: 1905.09001

    Article  ADS  Google Scholar 

  45. M. Ablikim, et al. (BESIII), Oscillating features in the electromagnetic structure of the neutron, Nature Phys. 17, 1200 (2021), arXiv: 2103.12486 [hep-ex]

    Article  ADS  Google Scholar 

  46. M. Ablikim, et al. (BESIII), Observation of a cross-section enhancement near mass threshold in e+e− → ΛΛ̄, Phys. Rev. D 97, 032013 (2018), arXiv: 1709.10236

    Article  ADS  Google Scholar 

  47. M. Ablikim, et al. (BESIII), Complete measurement of the A electromagnetic form factors, Phys. Rev. Lett. 123, 122003 (2019), arXiv: 1903.09421

    Article  ADS  Google Scholar 

  48. M. Ablikim, et al. (BESIII), Measurements of Σ+ and Σ− time-like electromagnetic form factors for center-of-mass energies from 2.3864 to 3.0200 GeV, Phys. Lett. B 814, 136110 (2021), arXiv: 2009.01404

    Article  Google Scholar 

  49. M. Ablikim, et al. (BESIII), Measurement of cross section for e+e− → Ξ−Ξ̄+ near threshold at BESIII, Phys. Rev. D 103, 012005 (2021), arXiv: 2010.08320

    Article  ADS  Google Scholar 

  50. M. Ablikim, et al. (BESIII), Observation of a resonant structure in e+e− → K+K−π0π0, Phys. Rev. Lett. 124, 112001 (2020), arXiv: 2001.04131

    Article  ADS  Google Scholar 

  51. M. Ablikim, et al. (BESIII), Observation of a structure in e+e− → ϕη′ at \(\sqrt s \) from 2.05 to 3.08 GeV, Phys. Rev. D 102, 012008 (2020), arXiv: 2003.13064

    Article  ADS  Google Scholar 

  52. M. Ablikim, et al. (BESIII), Measurement of e+e− → K+K− cross section at \(\sqrt s = 2.00 \sim - 3.08\,\,{\rm{GeV}}\), Phys. Rev. D 99, 032001 (2019), arXiv: 1811.08742

    Article  ADS  Google Scholar 

  53. M. Ablikim, et al. (BESIII), Cross section measurements of e+e− → K+K−K+K− and ϕK+K− at center-of-mass energies from 2.10 to 3.08 GeV, Phys. Rev. D 100, 032009 (2019), arXiv: 1907.06015

    Article  ADS  Google Scholar 

  54. M. Ablikim, et al. (BESIII), Observation of a charged charmoniumlike structure in e+e− → π+π− J/ψ at \(\sqrt s = 4.26\,\,{\rm{GeV}}\), Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949

    Article  ADS  Google Scholar 

  55. M. Ablikim, et al. (BESIII), Observation of a charged charmoniumlike structure Zc (4020) and search for the Zc(3900) in e+e− → π+π−hc, Phys. Rev. Lett. 111, 242001 (2013), arXiv: 1309.1896

    Article  ADS  Google Scholar 

  56. M. Ablikim, et al. (BESIII), Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e− → K+(Ds−D*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855

    Article  ADS  Google Scholar 

  57. M. Ablikim, et al. (BESIII), Precise measurement of the e+e− → π+π−J/ψ cross section at center- of-mass energies from 3.77 to 4.60 GeV, Phys. Rev. Lett. 118, 092001 (2017), arXiv: 1611.01317

    Article  ADS  Google Scholar 

  58. M. Ablikim, et al. (BESIII), Observation of e+e− → γX(3872) at BESIII, Phys. Rev. Lett. 112, 092001 (2014), arXiv: 1310.4101

    Article  ADS  Google Scholar 

  59. W. J. Marciano, The tau decay puzzle, Phys. Rev. D 45, 721 (1992)

    Article  ADS  Google Scholar 

  60. R. Aaij, et al. (LHCb), Observation of the doubly charmed baryon Ξ ++cc , Phys. Rev. Lett. 119, 112001 (2017), arXiv: 1707.01621

    Article  ADS  Google Scholar 

  61. H. P. Peng, et al. Physics Potential of a Super tau-Charm Facility, Snowmass2021-Letter of Interest (2021)

  62. Q. Luo, in: 8th International Particle Accelerator Conference (2017)

  63. M. Biagini, Super τ/charm project in Italy (2014)

  64. I. Adachi, T. E. Browder, P. Križan, S. Tanaka, and Y. Ushiroda (Belle-II), Detectors for extreme luminosity: Belle II, Nucl. Instrum. Meth. A 907, 46 (2018)

    Article  ADS  Google Scholar 

  65. A. A. Alves, Jr., et al., The LHCB detector at the LHC, JINST 3, S08005 (2008)

    ADS  Google Scholar 

  66. W. Altmannshofer, et al. (Belle II), The Belle II Physics Book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]

    Google Scholar 

  67. R. Aaij, et al. (LHCb), Physics case for an LHCB upgrade II–opportunities in flavour physics, and beyond, in the HL-LHC era, LHCB-PUB-2018-009, CERN-LHCC-2018–027 (2018), arXiv: 1808.08865 [hep-ex]

  68. G. Aad, et al. (ATLAS), Observation of a new particle in the search for the standard model Higgs boson with the atlas detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214

    Article  ADS  Google Scholar 

  69. S. Chatrchyan, et al. (CMS), Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235

    Article  ADS  Google Scholar 

  70. D. M. Asner, et al., Physics at BES-III, Int. J. Mod. Phys. A 24, S1 (2009), arXiv: 0809.1869 [hep-ex]

    Google Scholar 

  71. M. Ablikim, et al. (BESIII), Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983

    Article  ADS  Google Scholar 

  72. Y. Grossman, E. Passemar, and S. Schacht, On the statistical treatment of the Cabibbo angle anomaly, JHEP 07, 068 (2020), arXiv: 1911.07821 [hep-ph]

    Article  ADS  Google Scholar 

  73. J. P. Lees, et al. (BaBar), Search for CP violation in the decay τ−→ π−K 0s (≥0π0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]

    Article  ADS  Google Scholar 

  74. Y. S. Tsai, Production of polarized τ pairs and tests of CP violation using polarized e± colliders near threshold, Phys. Rev. D 51, 3172 (1995)

    Article  ADS  Google Scholar 

  75. P. Adlarson and A. Kupsc, CP symmetry tests in the cascade–anticascade decay of charmonium, Phys. Rev. D 100, 114005 (2019), arXiv: 1908.03102 [hep-ph]

    Article  ADS  Google Scholar 

  76. E. S. Swanson, The new heavy mesons: A status report, Phys. Rept. 429, 243 (2006), arXiv: hep-ph/0601110

    Article  ADS  Google Scholar 

  77. M. B. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008), arXiv: 0711.4556 [hep-ph]

    Article  ADS  Google Scholar 

  78. H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  79. A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016, 062C01 (2016), arXiv: 1603.09229 [hep-ph]

    Google Scholar 

  80. R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavyquark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017), arXiv: 1610.04528 [hep-ph]

    Article  ADS  Google Scholar 

  81. A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark Resonances, Phys. Rep. 668, 1 (2017), arXiv: 1611.07920 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  82. F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [Erratum: Rev. Mod. Phys. 94, 029901 (2022)], arXiv: 1705.00141 [hep-ph]

    Article  ADS  Google Scholar 

  83. A. Ali, J. S. Lange, and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123 (2017), arXiv: 1706.00610 [hep-ph]

    Article  ADS  Google Scholar 

  84. S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  85. M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018), arXiv: 1711.10626 [hep-ph]

    Article  ADS  Google Scholar 

  86. C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018), arXiv: 1808.01570 [hep-ex]

    Article  ADS  Google Scholar 

  87. A. Cerri, et al., Report from Working Group 4: Opportunities in flavour physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7, 867 (2019), arXiv: 1812.07638 [hep-ph]

    Google Scholar 

  88. Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976 [hep-ph]

    Article  ADS  Google Scholar 

  89. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rept. 873, 1 (2020), arXiv: 1907.07583 [hep-ex]

    Article  ADS  Google Scholar 

  90. F.-K. Guo, X.-H. Liu, and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030 [hep-ph]

    Article  Google Scholar 

  91. H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, and S.-L. Zhu, An updated review of the new hadron states, Rep. Prog. Phys. 86, 026201 (2023), arXiv: 2204.02649 [hep-ph]

    Article  ADS  Google Scholar 

  92. S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  93. M. Ablikim, et al. (BESIII), Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e− → K+(D −s D*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855 [hep-ex]

    Article  ADS  Google Scholar 

  94. R. Aaij, et al. (LHCb), Observation of new resonances decaying to J/ψK+ and J/ψϕ, Phys. Rev. Lett. 127, 082001 (2021), arXiv: 2103.01803 [hep-ex]

    Article  ADS  Google Scholar 

  95. M. Cleven, F.-K. Guo, C. Hanhart, Q. Wang, and Q. Zhao, Employing spin symmetry to disentangle different models for the XYZ states, Phys. Rev. D 92, 014005 (2015), arXiv: 1505.01771 [hep-ph]

    Article  ADS  Google Scholar 

  96. Q. Wang, C. Hanhart, and Q. Zhao, Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett. 111, 132003 (2013), arXiv: 1303.6355 [hep-ph]

    Article  ADS  Google Scholar 

  97. A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, and A. P. Szczepaniak (JPAC), Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B 772, 200 (2017), arXiv: 1612.06490 [hep-ph]

    Article  ADS  Google Scholar 

  98. Z. Yang, X. Cao, F.-K. Guo, J. Nieves, and M. P. Valderrama, Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725 [hep-ph]

    Article  ADS  Google Scholar 

  99. A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and M. B. Voloshin, Heavy quark spin structure in Zb resonances, Phys. Rev. D 84, 054010 (2011), arXiv: 1105.4473 [hep-ph]

    Article  ADS  Google Scholar 

  100. Q.-F. Cao, H.-R. Qi, Y.-F. Wang, and H.-Q. Zheng, Discussions on the line-shape of the X(4660) resonance, Phys. Rev. D 100, 054040 (2019), arXiv: 1906.00356 [hep-ph]

    Article  ADS  Google Scholar 

  101. X.-K. Dong, F.-K. Guo, and B.-S. Zou, A survey of heavy–antiheavy hadronic molecules, Prog. Phys. 41, 65 (2021), arXiv: 2101.01021 [hep-ph]

    Google Scholar 

  102. K.-T. Chao, F.-K. Guo, and Y.-J. Zhang, Production of J/ψ pp̄ in electron–positron collisions (2023) (in preparation)

  103. Y.-Q. Ma, Y.-J. Zhang, and K.-T. Chao, QCD Corrections to e+e− → J/ψ + gg at B factories, Phys. Rev. Lett. 102, 162002 (2009), arXiv: 0812.5106 [hep-ph]

    Article  ADS  Google Scholar 

  104. C.-W. Shen, F.-K. Guo, J.-J. Xie, and B.-S. Zou, Disentangling the hadronic molecule nature of the Pc(4380) pentaquark-like structure, Nucl. Phys. A 954, 393 (2016), arXiv: 1603.04672 [hep-ph]

    Article  ADS  Google Scholar 

  105. Y.-J. Zhang, Y.-j. Gao, and K.-T. Chao, Next-to-leading-order QCD correction to e+e− → J/ψ + ηc at \(\sqrt s = 10.6\,\,{\rm{GeV}}\), Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076

    Article  ADS  Google Scholar 

  106. Y.-J. Zhang and K.-T. Chao, Double-charm production e+e− → J/ψ + cc̄ at B factories with next-to-leading-order QCD corrections, Phys. Rev. Lett. 98, 092003 (2007), arXiv: hep-ph/0611086

    Article  ADS  Google Scholar 

  107. K.-T. Chao, The (cc)−(c̄c) (diquark–anti-diquark) states in e+e− annihilation, Z. Phys. C 7, 317 (1981)

    Article  ADS  Google Scholar 

  108. M. Karliner, S. Nussinov, and J. L. Rosner, \(QQ\overline {QQ} \) states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017), arXiv: 1611.00348 [hep-ph]

    Article  ADS  Google Scholar 

  109. V. R. Debastiani, F. Aceti, W.-H. Liang, and E. Oset, Revising the f1 (1420) resonance, Phys. Rev. D 95, 034015 (2017), arXiv: 1611.05383 [hep-ph]

    Article  ADS  Google Scholar 

  110. G.-J. Wang, L. Meng, and S.-L. Zhu, Spectrum of the fully-heavy tetraquark state \(QQ\overline {{Q^\prime }{Q^\prime }} \), Phys. Rev. D 100, 096013 (2019), arXiv: 1907.05177 [hep-ph]

    Article  ADS  Google Scholar 

  111. M. N. Anwar, J. Ferretti, F.-K. Guo, E. Santopinto, and B.-S. Zou, Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), arXiv: 1710.02540 [hep-ph]

    Article  ADS  Google Scholar 

  112. R. Aaij, et al. (LHCb), Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957 [hep-ex]

    Article  Google Scholar 

  113. L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G. Edwards, B. Joo, and D. G. Richards (Hadron Spectrum), Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07, 126 (2012), arXiv: 1204.5425 [hep-ph]

    Article  ADS  Google Scholar 

  114. S.-L. Zhu, The Possible interpretations of Y(4260), Phys. Lett. B 625, 212 (2005), arXiv: hep-ph/0507025

    Article  ADS  Google Scholar 

  115. V. Bhardwaj, et al. (Belle), Evidence of a new narrow resonance decaying to χc1γ in B → χc1γK, Phys. Rev. Lett. 111, 032001 (2013), arXiv: 1304.3975 [hep-ex]

    Article  ADS  Google Scholar 

  116. M. Ablikim, et al. (BESIII), Observation of the ψ(13D2) state in e+e− → π+π−γχc1 at BESIII, Phys. Rev. Lett. 115, 011803 (2015), arXiv: 1503.08203 [hep-ex]

    Article  ADS  Google Scholar 

  117. Y.-B. Yang, Y. Chen, L.-C. Gui, C. Liu, Y.-B. Liu, Z. Liu, J.-P. Ma, and J.-B. Zhang (CLQCD), Lattice study on ηc2 and X(3872), Phys. Rev. D 87, 014501 (2013), arXiv: 1206.2086 [hep-lat]

    Article  ADS  Google Scholar 

  118. H.-B. Li and X.-R. Lyu, Study of the standard model with weak decays of charmed hadrons at BESIII, Natl. Sci. Rev. 8, nwab181 (2021), arXiv: 2103.00908 [hep-ex]

    Article  Google Scholar 

  119. A. Bazavov, et al., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98, 074512 (2018), arXiv: 1712.09262 [hep-lat]

    Article  ADS  MathSciNet  Google Scholar 

  120. M. Ablikim, et al. (BESIII), Precision measurements of B(D+ → μ+νμ), the pseudoscalar decay constant fD+, and the quark mixing matrix element ∣Vcd∣, Phys. Rev. D 89, 051104 (2014), arXiv: 1312.0374 [hep-ex]

    Article  ADS  Google Scholar 

  121. M. Ablikim, et al. (BESIII), Observation of the leptonic decay D+ → τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]

    Article  ADS  Google Scholar 

  122. M. Ablikim, et al. (BESIII Collaboration), Measurement of the absolute branching fractions for purely leptonic Ds+ decays, Phys. Rev. D 104, 052009 (2021), arXiv: 2102.11734 [hep-ex]

    Article  ADS  Google Scholar 

  123. Y. S. Amhis, et al. (Heavy Flavor Averaging Group, HFLAV), Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021, Phys. Rev. D 107, 052008 (2023), arXiv: 2206.07501 [hep-ex]

    Article  ADS  Google Scholar 

  124. M. Ablikim, et al. (BESIII), Measurement of the absolute branching fraction of Ds+ → τ+ντ via τ+ → e+νeν̄τ, Phys. Rev. Lett. 127, 171801 (2021), arXiv: 2106.02218 [hep-ex]

    Article  ADS  Google Scholar 

  125. M. Ablikim, et al. (BESIII), Determination of the pseudoscalar decay constant \({f_{{D_s}^ + }}\) via D +s → μ+νμ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]

    Article  ADS  Google Scholar 

  126. J. Liu, X. Shi, H. Li, X. Zhou, and B. Zheng, Prospects of CKM elements ∣Vcs∣ and decay constant \({f_{{D_s}^ + }}\) in D +s + → μ+νμ decay at STCF, Eur. Phys. J. C 82, 337 (2022), arXiv: 2109.14969 [hep-ex]

    Article  ADS  Google Scholar 

  127. H. Li, T. Luo, X. Shi, and X. Zhou, Feasibility study of D +s → τ+ντ decay and test of lepton flavor universality with leptonic D +s decays at STCF, Eur. Phys. J. C 82, 310 (2022), arXiv: 2110.08864 [hep-ex]

    Article  ADS  Google Scholar 

  128. J. Charles, A. Hocker, H. Lacker, S. Laplace, F. R. Le Diberder, J. Malcles, J. Ocariz, M. Pivk, and L. Roos (CKMfitter Group), CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005), arXiv: hep-ph/0406184

    Article  ADS  Google Scholar 

  129. CKMfitter Group, URL: ckmfitter.in2p3.fr/ (2022)

  130. M. Bona, et al. (UTfit), The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07, 028 (2005), arXiv: hep-ph/0501199

    Article  ADS  Google Scholar 

  131. UTfit Collaboration, URL: utfit.org/UTfit/WebHome (2022)

  132. G. Belanger and C. Q. Geng, T-violating muon polarization in Kμ3 decays, Phys. Rev. D 44, 2789 (1991)

    Article  ADS  Google Scholar 

  133. Y. Grossman, Beyond the standard model with B and K physics, Int. J. Mod. Phys. A 19, 907 (2004), arXiv: hep-ph/0310229

    Article  ADS  Google Scholar 

  134. W. Wang, F.-S. Yu, and Z.-X. Zhao, Novel method to reliably determine the photon helicity in B → K1γ, Phys. Rev. Lett. 125, 051802 (2020), arXiv: 1909.13083 [hep-ph]

    Article  ADS  Google Scholar 

  135. S. Fajfer, I. Nisandzic, and U. Rojec, Discerning new physics in charm meson leptonic and semileptonic decays, Phys. Rev. D 91, 094009 (2015), arXiv: 1502.07488 [hep-ph]

    Article  ADS  Google Scholar 

  136. M. Ablikim, et al. (BESIII), Measurement of the branching fraction for the semileptonic decay D0(+) → π−(0)μ+νμ and test of lepton flavor universality, Phys. Rev. Lett. 121, 171803 (2018), arXiv: 1802.05492 [hep-ex]

    Article  ADS  Google Scholar 

  137. M. Ablikim, et al. (BESIII), Study of the D0 → K−μ+νμ dynamics and test of lepton flavor universality with D0 → K−ℓ+νℓ decays, Phys. Rev. Lett. 122, 011804 (2019), arXiv: 1810.03127 [hep-ex]

    Article  ADS  Google Scholar 

  138. A. F. Falk, Y. Grossman, Z. Ligeti, Y. Nir, and A. A. Petrov, D0−D0 mass difference from a dispersion relation, Phys. Rev. D 69, 114021 (2004), arXiv: hep-ph/0402204

    Article  ADS  Google Scholar 

  139. R. T. D’Agnolo, G. Grosso, M. Pierini, A. Wulzer, and M. Zanetti, Learning multivariate new physics, Eur. Phys. J. C 81, 89 (2021), arXiv: 1912.12155 [hep-ph]

    Article  ADS  Google Scholar 

  140. HFLAV Collaboration, URL: hflav.web.cern.ch/ (2022)

  141. B. O’Leary, et al. (SuperB), SuperB progress reports–Physics, arXiv: 1008.1541 [hep-ex] (2010)

  142. Z.-Z. Xing, An overview of D0 anti-D0 mixing and CP violation, Chin. Phys. C 32, 483 (2008)

    Article  ADS  Google Scholar 

  143. Z.-Z. Xing, D0−D̄0 mixing and CP violation in neutral D-meson decays, Phys. Rev. D 55, 196 (1997), arXiv: hep-ph/9606422

    Article  ADS  Google Scholar 

  144. Z.-Z. Xing, Effect of K0−anti-K0 mixing on CP asymmetries in weak decays of D and B mesons, Phys. Lett. B 353, 313 (1995), [Erratum: Phys. Lett. B 363, 266 (1995)], arXiv: hep-ph/9505272

    Article  ADS  Google Scholar 

  145. F.-S. Yu, D. Wang, and H.-N. Li, CP asymmetries in charm decays into neutral kaons, Phys. Rev. Lett. 119, 181802 (2017), arXiv: 1707.09297 [hep-ph]

    Article  ADS  Google Scholar 

  146. R. Aaij, et al. (LHCb), Observation of CP violation in charm decays, Phys. Rev. Lett. 122, 211803 (2019), arXiv: 1903.08726 [hep-ex]

    Article  ADS  Google Scholar 

  147. M. Saur and F.-S. Yu, Charm CPV: Observation and prospects, Sci. Bull. 65, 1428 (2020), arXiv: 2002.12088[hep-ex]

    Article  Google Scholar 

  148. H.-Y. Cheng and C.-W. Chiang, Direct CP violation in two-body hadronic charmed meson decays, Phys. Rev. D 85, 034036 (2012) [Erratum: Phys. Rev. D 85, 079903 (2012)], arXiv: 1201.0785 [hep-ph]

    Article  ADS  Google Scholar 

  149. H.-N. Li, C.-D. Lu, and F.-S. Yu, Branching ratios and direct CP asymmetries in D → PP decays, Phys. Rev. D 86, 036012 (2012), arXiv: 1203.3120 [hep-ph]

    Article  ADS  Google Scholar 

  150. D. Pirtskhalava and P. Uttayarat, CP violation and flavor SU(3) breaking in D-meson decays, Phys. Lett. B 712, 81 (2012), arXiv: 1112.5451 [hep-ph]

    Article  ADS  Google Scholar 

  151. M. Gronau, High order U -spin breaking: A precise amplitude relation in D0 decays, Phys. Lett. B 730, 221 (2014) [Addendum: Phys. Lett. B 735, 282 (2014)], arXiv: 1311.1434 [hep-ph]

    Article  ADS  Google Scholar 

  152. F. Buccella, M. Lusignoli, A. Pugliese, and P. Santorelli, CP violation in D meson decays: Would it be a sign of new physics? Phys. Rev. D 88, 074011 (2013), arXiv: 1305.7343[hep-ph]

    Article  ADS  Google Scholar 

  153. F. Buccella, A. Paul, and P. Santorelli, SU(3)F breaking through final state interactions and CP asymmetries in D → PP decays, Phys. Rev. D 99, 113001 (2019), arXiv: 1902.05564 [hep-ph]

    Article  ADS  Google Scholar 

  154. H.-N. Li, C.-D. Lü, and F.-S. Yu, Implications on the first observation of charm CPV at LHCb, arXiv: 1903.10638 (2019)

  155. Y. Grossman and S. Schacht, The emergence of the ΔU = 0 rule in charm physics, JHEP 07, 020 (2019), arXiv: 1903.10952 [hep-ph]

    Article  ADS  Google Scholar 

  156. I. I. Bigi and A. Paul, On CP asymmetries in two-, three- and four-body D decays, JHEP 03, 021 (2012), arXiv: 1110.2862 [hep-ph]

    Article  ADS  Google Scholar 

  157. D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14, 125003 (2012), arXiv: 1206.2942 [hep-ph]

    Article  ADS  Google Scholar 

  158. A. Bondar, A. Poluektov, and V. Vorobiev, Charm mixing in a model-independent analysis of correlated D0D̄0 decays, Phys. Rev. D 82, 034033 (2010), arXiv: 1004.2350 [hep-ph]

    Article  ADS  Google Scholar 

  159. D. Atwood and A. A. Petrov, Lifetime differences in heavy mesons with time independent measurements, Phys. Rev. D 71, 054032 (2005), arXiv: hep-ph/0207165

    Article  ADS  Google Scholar 

  160. Y. Shi and J. Yang, Time reversal symmetry violation in entangled pseudoscalar neutral charmed mesons, Phys. Rev. D 98, 075019 (2018), arXiv: 1612.07628 [hep-ph]

    Article  ADS  Google Scholar 

  161. V. A. Kostelecky, Formalism for CPT, T, and Lorentz violation in neutral meson oscillations, Phys. Rev. D 64, 076001 (2001), arXiv: hep-ph/0104120

    Article  ADS  Google Scholar 

  162. (LHCb), Simultaneous determination of the CKM angle γ and parameters related to mixing and CP violation in the charm sector, LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-002 (2022)

  163. M. Gronau and D. London, How to determine all the angles of the unitarity triangle from B 0d → DKs and B 0s → D0, Phys. Lett. B 253, 483 (1991)

    Article  ADS  Google Scholar 

  164. M. Gronau and D. Wyler, On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B 265, 172 (1991)

    Article  ADS  Google Scholar 

  165. D. Atwood, I. Dunietz, and A. Soni, Enhanced CP violation with B → K D0(D̄0) modes and extraction of the Cabibbo–Kobayashi–Maskawa angle γ, Phys. Rev. Lett. 78, 3257 (1997), arXiv: hep-ph/9612433

    Article  ADS  Google Scholar 

  166. D. Atwood, I. Dunietz, and A. Soni, Improved methods for observing CP violation in B±→ KD and measuring the CKM phase γ, Phys. Rev. D 63, 036005 (2001), arXiv: hep-ph/0008090

    Article  ADS  Google Scholar 

  167. A. Giri, Y. Grossman, A. Soffer, and J. Zupan, Determining γ using B±→ DK± with multibody D decays, Phys. Rev. D 68, 054018 (2003), arXiv: hep-ph/0303187

    Article  ADS  Google Scholar 

  168. M. Ablikim, et al. (BESIII), Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983 [hep-ex]

    Article  ADS  Google Scholar 

  169. G. Burdman and I. Shipsey, D0−D̄0 mixing and rare charm decays, Ann. Rev. Nucl. Part. Sci. 53, 431 (2003), arXiv: hep-ph/0310076

    Article  ADS  Google Scholar 

  170. E. Golowich, J. Hewett, S. Pakvasa, and A. A. Petrov, Relating D0−D̄0 mixing and D0 → l+l− with new physics, Phys. Rev. D 79, 114030 (2009), arXiv: 0903.2830 [hep-ph]

    Article  ADS  Google Scholar 

  171. M. Ablikim, et al. (BESIII), Search for the rare decays D → h(h(′))e+e−, Phys. Rev. D 97, 072015 (2018), arXiv: 1802.09752 [hep-ex]

    Article  ADS  Google Scholar 

  172. M. Ablikim, et al. (BESIII), Search for the decay D0 → π0νν̄, Phys. Rev. D 105, L071102 (2022), arXiv: 2112.14236 [hep-ex]

    Article  ADS  Google Scholar 

  173. H.-X. Chen, W. Chen, X. Liu, Y.-R. Liu, and S.-L. Zhu, A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928 [hep-ph]

    Article  ADS  Google Scholar 

  174. Y. Kato and T. Iijima, Open charm hadron spectroscopy at B-factories, Prog. Part. Nucl. Phys. 105, 61 (2019), arXiv: 1810.03748 [hep-ex]

    Article  ADS  Google Scholar 

  175. A. Zupanc, et al. (Belle), Measurement of the branching fraction \({\cal B}({\Lambda _c}^ + \to p{K^ - }{\pi ^ + })\), Phys. Rev. Lett. 113, 042002 (2014), arXiv: 1312.7826 [hep-ex]

    Article  ADS  Google Scholar 

  176. M. Ablikim, et al. (BESIII), Measurements of absolute hadronic branching fractions of the Λc+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380 [hep-ex]

    Article  ADS  Google Scholar 

  177. S. B. Yang, et al. (Belle), First observation of the doubly Cabibbo-suppressed decay of a charmed baryon: Λ +c → pK+π−, Phys. Rev. Lett. 117, 011801 (2016), arXiv: 1512.07366[hep-ex]

    Article  ADS  Google Scholar 

  178. A. M. Sirunyan, et al. (CMS), Measurement of inclusive very forward jet cross sections in proton-lead collisions at \(\sqrt {{s_{{\rm{NN}}}}} = 5.02\,\,{\rm{TeV}}\), JHEP 05, 043 (2019), arXiv: 1812.01691 [hep-ex]

    ADS  Google Scholar 

  179. M. Ablikim, et al. (BESIII), Partial wave analysis of the charmed baryon hadronic decay Λ +c → Λπ+π0, JHEP 12, 033 (2022), arXiv: 2209.08464 [hep-ex]

    Google Scholar 

  180. M. Bishai, et al. (CLEO), Measurement of the decay asymmetry parameters in Λ +c → Λπ+ and Λ +c → Σ+π0, Phys. Lett. B 350, 256 (1995), arXiv: hep-ex/9502004

    Article  ADS  Google Scholar 

  181. H.-Y. Cheng and B. Tseng, Cabibbo allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48, 4188 (1993), arXiv: hep-ph/9304286

    Article  ADS  Google Scholar 

  182. K. K. Sharma and R. C. Verma, A study of weak mesonic decays of Λc and Ξc baryons on the basis of HQET results, Eur. Phys. J. C 7, 217 (1999), arXiv: hep-ph/9803302

    Article  ADS  Google Scholar 

  183. P. Zenczykowski, Quark and pole models of nonleptonic decays of charmed baryons, Phys. Rev. D 50, 402 (1994), arXiv: hep-ph/9309265

    Article  ADS  Google Scholar 

  184. A. Datta, Nonleptonic two-body decays of charmed and Lambda(b) baryons, arXiv: hep-ph/9504428 (1995)

  185. M. Ablikim, et al. (BESIII), Measurements of weak decay asymmetries of Λ +c → pKs0, Λπ+, Σ+π0, and Σ0π+, Phys. Rev. D 100, 072004 (2019), arXiv: 1905.04707 [hep-ex]

    Article  ADS  Google Scholar 

  186. L. K. Li, et al. (Belle), Search for CP violation and measurement of branching fractions and decay asymmetry parameters for Λ +c → Λh+ and Λ +c → Σ0h+ (h = K, π), Sci. Bull. 68, 583 (2023), arXiv: 2208.08695 [hep-ex]

    Article  Google Scholar 

  187. Y. B. Li, et al. (Belle), First measurements of absolute branching fractions of the Ξ 0c baryon at Belle, Phys. Rev. Lett. 122, 082001 (2019), arXiv: 1811.09738 [hep-ex]

    Article  ADS  Google Scholar 

  188. Y. B. Li, et al. (Belle), First measurements of absolute branching fractions of the Ξ +c baryon at Belle, Phys. Rev. D 100, 031101 (2019), arXiv: 1904.12093 [hep-ex]

    Article  ADS  Google Scholar 

  189. R. Dhir and C. S. Kim, Axial-vector emitting weak nonleptonic decays of Ω 0c baryon, Phys. Rev. D 91, 114008 (2015), arXiv: 1501.04259 [hep-ph]

    Article  ADS  Google Scholar 

  190. H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin, T.-M. Yan, and H.-L. Yu, Heavy flavor conserving nonleptonic weak decays of heavy baryons, Phys. Rev. D 46, 5060 (1992)

    Article  ADS  Google Scholar 

  191. R. Aaij, et al. (LHCb), First branching fraction measurement of the suppressed decay Ξ 0c → π−Λ +c , Phys. Rev. D 102, 071101 (2020), arXiv: 2007.12096 [hep-ex]

    Article  ADS  Google Scholar 

  192. S. S. Tang, et al. (Belle), Measurement of the branching fraction of Ξ 0c →Λ +c π− at Belle, Phys. Rev. D 107, 032005 (2023), arXiv: 2206.08527 [hep-ex]

    Article  ADS  Google Scholar 

  193. P.-Y. Niu, Q. Wang, and Q. Zhao, Study of heavy quark conserving weak decays in the quark model, Phys. Lett. B 826, 136916 (2022), arXiv: 2111.14111 [hep-ph]

    Article  Google Scholar 

  194. H.-Y. Cheng and F. Xu, Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons, Phys. Rev. D 105, 094011 (2022), arXiv: 2204.03149 [hep-ph]

    Article  ADS  Google Scholar 

  195. H.-Y. Cheng, C.-W. Liu, and F. Xu, Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons: An update, Phys. Rev. D 106, 093005 (2022), arXiv: 2209.00257 [hep-ph]

    Article  ADS  Google Scholar 

  196. R. Perez-Marcial, R. Huerta, A. Garcia, and M. Avila-Aoki, Predictions for semileptonic decays of charm baryons. 2. Nonrelativistic and MIT bag quark models, Phys. Rev. D 40, 2955 (1989) [Erratum: Phys. Rev. D 44, 2203 (1991)]

    Article  ADS  Google Scholar 

  197. R. L. Singleton, Semileptonic baryon decays with a heavy quark, Phys. Rev. D 43, 2939 (1991)

    Article  ADS  Google Scholar 

  198. H.-Y. Cheng and B. Tseng, 1/M corrections to baryonic form-factors in the quark model, Phys. Rev. D 53, 1457 (1996) [Erratum: Phys. Rev. D 55, 1697 (1997)], arXiv: hep-ph/9502391

    Article  ADS  Google Scholar 

  199. M. Pervin, W. Roberts, and S. Capstick, Semileptonic decays of heavy lambda baryons in a quark model, Phys. Rev. C 72, 035201 (2005), arXiv: nucl-th/0503030

    Article  ADS  Google Scholar 

  200. M. A. Ivanov, V. E. Lyubovitskij, J. G. Korner, and P. Kroll, Heavy baryon transitions in a relativistic three quark model, Phys. Rev. D 56, 348 (1997), arXiv: hep-ph/9612463

    Article  ADS  Google Scholar 

  201. T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, and P. Santorelli, Heavy-to-light semileptonic decays of Λb and Λc baryons in the covariant confined quark model, Phys. Rev. D 90, 114033 (2014) [Erratum: Phys. Rev. D 94, 059902 (2016)], arXiv: 1410.6043 [hep-ph]

    Article  ADS  Google Scholar 

  202. R. N. Faustov and V. O. Galkin, Semileptonic decays of Λc baryons in the relativistic quark model, Eur. Phys. J. C 76, 628 (2016), arXiv: 1610.00957 [hep-ph]

    Article  ADS  Google Scholar 

  203. C. W. Luo, Heavy to light baryon weak form-factors in the light cone constituent quark model, Eur. Phys. J. C 1, 235 (1998)

    Article  ADS  Google Scholar 

  204. R. S. Marques de Carvalho, F. S. Navarra, M. Nielsen, E. Ferreira, and H. G. Dosch, Form-factors and decay rates for heavy lambda semileptonic decays from QCD sum rules, Phys. Rev. D 60, 034009 (1999), arXiv: hep-ph/9903326

    Article  ADS  Google Scholar 

  205. M.-Q. Huang and D.-W. Wang, Semileptonic decay Λc → Λl+ν from QCD light-cone sum rules, arXiv: hep-ph /0608170 (2006)

  206. K. Azizi, Y. Sarac, and H. Sundu, Light cone QCD sum rules study of the semileptonic heavy ΞQ and ΞQ′ transitions to Ξ and Σ baryons, Eur. Phys. J. A 48, 2 (2012), arXiv: 1107.5925 [hep-ph]

    Article  ADS  Google Scholar 

  207. S. Meinel, Λc → Λl+νl form factors and decay rates from lattice QCD with physical quark masses, Phys. Rev. Lett. 118, 082001 (2017), arXiv: 1611.09696 [hep-lat]

    Article  ADS  Google Scholar 

  208. S. Meinel, Λc → N form factors from lattice QCD and phenomenology of Λc → nℓ+νℓ and Λc → pμ+μ− decays, Phys. Rev. D 97, 034511 (2018), arXiv: 1712.05783 [hep-lat]

    Article  ADS  Google Scholar 

  209. M. Ablikim, et al. (BESIII), Measurement of the absolute branching fraction for Λ +c → Λe+νe, Phys. Rev. Lett. 115, 221805 (2015), arXiv: 1510.02610 [hep-ex]

    Article  ADS  Google Scholar 

  210. H.-Y. Cheng, Remarks on the strong coupling constants in heavy hadron chiral Lagrangians, Phys. Lett. B 399, 281 (1997), arXiv: hep-ph/9701234

    Article  ADS  Google Scholar 

  211. H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin, T.-M. Yan, and H.-L. Yu, Chiral Lagrangians for radiative decays of heavy hadrons, Phys. Rev. D 47, 1030 (1993), arXiv: hep-ph/9209262

    Article  ADS  Google Scholar 

  212. N. Jiang, X.-L. Chen, and S.-L. Zhu, Electromagnetic decays of the charmed and bottom baryons in chiral perturbation theory, Phys. Rev. D 92, 054017 (2015), arXiv: 1505.02999 [hep-ph]

    Article  ADS  Google Scholar 

  213. G.-J. Wang, L. Meng, and S.-L. Zhu, Radiative decays of the singly heavy baryons in chiral perturbation theory, Phys. Rev. D 99, 034021 (2019), arXiv: 1811.06208 [hep-ph]

    Article  ADS  Google Scholar 

  214. J. Yelton, et al. (Belle), Study of electromagnetic decays of orbitally excited Ξc baryons, Phys. Rev. D 102, 071103 (2020), arXiv: 2009.03951 [hep-ex]

    Article  ADS  Google Scholar 

  215. Y. Li, et al. (Belle), First search for the weak radiative decays Λ +c → Σ+γ and Ξ 0c → Ξ γc , Phys. Rev. D 107, 032001 (2023), arXiv: 2206.12517 [hep-ex]

    Article  ADS  Google Scholar 

  216. M. Ablikim, et al. (BESIII), Search for the weak radiative decay Λ +c → Σ+γ at BESIII, arXiv: 2212.07214 (2022)

  217. A. Bondar, A. Grabovsky, A. Reznichenko, A. Rudenko, and V. Vorobyev, Measurement of the weak mixing angle at a super charm-tau factory with data-driven monitoring of the average electron beam polarization, JHEP 03, 076 (2020), arXiv: 1912.09760 [hep-ph]

    Article  ADS  Google Scholar 

  218. R. Aaij, et al. (LHCb), A measurement of the CP asymmetry difference in Λ +c → pK−K+ and pπ−π+ decays, JHEP 03, 182 (2018), arXiv: 1712.07051[hep-ex]

    ADS  Google Scholar 

  219. I. I. Bigi, Probing CP asymmetries in charm baryons decays, arXiv: 1206.4554 (2012)

  220. X.-D. Shi, X.-W. Kang, I. Bigi, W.-P. Wang, and H.-P. Peng, Prospects for CP and P violation in Λ +c decays at super tau charm facility, Phys. Rev. D 100, 113002 (2019), arXiv: 1904.12415 [hep-ph]

    Article  ADS  Google Scholar 

  221. B. Aubert, et al. (BaBar), Observation of a charmed baryon decaying to D0p at a mass near 2.94 GeV/c2, Phys. Rev. Lett. 98, 012001 (2007), arXiv: hep-ex/0603052

    Article  ADS  Google Scholar 

  222. H.-Y. Cheng, Charmed baryons circa 2015, Front. Phys. (Beijing) 10, 101406 (2015)

    Article  ADS  Google Scholar 

  223. R. Aaij, et al. (LHCb), Study of the D0p amplitude in Λ 0b → D0pπ− decays, JHEP 05, 030 (2017), arXiv: 1701.07873 [hep-ex]

    Article  ADS  Google Scholar 

  224. H.-Y. Cheng and C.-W. Chiang, Quantum numbers of Ωc states and other charmed baryons, Phys. Rev. D 95, 094018 (2017), arXiv: 1704.00396 [hep-ph]

    Article  ADS  Google Scholar 

  225. S.-Q. Luo, B. Chen, Z.-W. Liu, and X. Liu, Resolving the low mass puzzle of Λc(2940)+, Eur. Phys. J. C 80, 301 (2020), arXiv: 1910.14545[hep-ph]

    Article  ADS  Google Scholar 

  226. R. Aaij, et al. (LHCb), Observation of five new narrow Ω 0c states decaying to Ξ +c + K−, Phys. Rev. Lett. 118, 182001 (2017), arXiv: 1703.04639 [hep-ex]

    Article  ADS  Google Scholar 

  227. J. Yelton, et al. (Belle), Observation of excited Ωc charmed baryons in e+e− collisions, Phys. Rev. D 97, 051102 (2018), arXiv: 1711.07927 [hep-ex]

    Article  ADS  Google Scholar 

  228. (LHCb), Observation of new Ω 0c states decaying to the Ξ +c K− final state, arXiv: 2302.04733 (2023)

  229. W.-D. Li, Y.-J. Mao, and Y.-F. Wang, The BES-III detector and offline software, Int. J. Mod. Phys. A 24S1, 9 (2009)

    Article  Google Scholar 

  230. D. d’Enterria and H.-S. Shao, Prospects for ditauonium discovery at colliders, arXiv: 2302.07365 [hep-ph] (2023)

  231. H. Davoudiasl and W. J. Marciano, Tale of two anomalies, Phys. Rev. D 98, 075011 (2018), arXiv: 1806.10252 [hep-ph]

    Article  ADS  Google Scholar 

  232. B. Abi, et al. (Muon g-2), Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]

    Article  ADS  Google Scholar 

  233. S. Eidelman and M. Passera, Theory of the tau lepton anomalous magnetic moment, Mod. Phys. Lett. A22, 159 (2007), arXiv: hep-ph/0701260 [hep-ph]

    Article  ADS  Google Scholar 

  234. J. Abdallah, et al. (DELPHI), Study of tau-pair production in photon–photon collisions at LEP and limits on the anomalous electromagnetic moments of the tau lepton, Eur. Phys. J. C 35, 159 (2004), arXiv: hep-ex/0406010

    Article  ADS  Google Scholar 

  235. X. Chen and Y. Wu, Search for the electric dipole moment and anomalous magnetic moment of the tau lepton at tau factories, JHEP 10, 089 (2019), arXiv: 1803.00501 [hep-ph]

    Article  ADS  Google Scholar 

  236. J. Bernabeu, G. A. Gonzalez-Sprinberg, J. Papavassiliou, and J. Vidal, Tau anomalous magnetic moment form-factor at super B/flavor factories, Nucl. Phys. B 790, 160 (2008), arXiv: 0707.2496[hep-ph]

    Article  ADS  Google Scholar 

  237. S. Eidelman, D. Epifanov, M. Fael, L. Mercolli, and M. Passera, τ dipole moments via radiative leptonic τ decays, JHEP 03, 140 (2016), arXiv: 1601.07987 [hep-ph]

    Article  ADS  Google Scholar 

  238. A. Pich, Precision Tau Physics, Prog. Part. Nucl. Phys. 75, 41 (2014), arXiv: 1310.7922 [hep-ph]

    Article  ADS  Google Scholar 

  239. Y. Amhis, et al. (HFLAV), Averages of B-hadron, C-hadron, and tau-lepton properties as of early 2012, arXiv: 1207.1158 (2012)

  240. A. B. Arbuzov and T. V. Kopylova, Michel parameters in radiative muon decay, JHEP 09, 109 (2016), arXiv: 1605.06612 [hep-ph]

    Article  ADS  Google Scholar 

  241. J. P. Lees, et al. (BaBar), Measurement of the branching fractions of the radiative leptonic τ decays τ → eγνν̄ and τ → μγνν̄ at BABAR, Phys. Rev. D 91, 051103 (2015), arXiv: 1502.01784 [hep-ex]

    Article  ADS  Google Scholar 

  242. N. Shimizu, et al. (Belle), Measurement of the tau Michel parameters η̄ and ξκ in the radiative leptonic decay τ− → ℓ−ντν̄ℓγ, PTEP 2018, 023C01 (2018), arXiv:1709.08833 [hep-ex]

    Google Scholar 

  243. A. Flores-Tlalpa, G. López Castro, and P. Roig, Five-body leptonic decays of muon and tau leptons, JHEP 04, 185 (2016), arXiv: 1508.01822 [hep-ph]

    ADS  Google Scholar 

  244. E. Braaten, S. Narison, and A. Pich, QCD analysis of the tau hadronic width, Nucl. Phys. B 373, 581 (1992)

    Article  ADS  Google Scholar 

  245. D. Boito, M. Golterman, M. Jamin, A. Mahdavi, K. Maltman, J. Osborne, and S. Peris, Updated determination of αS from τ decays, Phys. Rev. D 85, 093015 (2012)

    Article  ADS  Google Scholar 

  246. M. Beneke, D. Boito, and M. Jamin, Perturbative expansion of τ hadronic spectral function moments and αS extractions, JHEP 01, 125 (2013), arXiv: 1210.8038 [hep-ph]

    Article  ADS  Google Scholar 

  247. I. I. Bigi and A. I. Sanda, A “Known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037

    Article  ADS  Google Scholar 

  248. Y. Grossman and Y. Nir, CP violation in τ± → π±KSν and D± → π±KS: The importance of KS−KL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]

    Article  ADS  Google Scholar 

  249. M. Bischofberger, et al. (Belle), Search for CP violation in τ → K 0s πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]

    Article  ADS  Google Scholar 

  250. H. Sang, X. Shi, X. Zhou, X. Kang, and J. Liu, Feasibility study of CP violation in τ → KSπντ decays at the Super Tau Charm Facility, Chin. Phys. C 45, 053003 (2021), arXiv: 2012.06241 [hep-ex]

    Article  ADS  Google Scholar 

  251. F.-Z. Chen, X.-Q. Li, and Y.-D. Yang, CP asymmetry in the angular distribution of τ → KSπντ decays, JHEP 05, 151 (2020), arXiv: 2003.05735 [hep-ph]

    Article  ADS  Google Scholar 

  252. W. Bernreuther and O. Nachtmann, CP violating correlations in electron positron annihilation into τ leptons, Phys. Rev. Lett. 63, 2787 (1989) [Erratum: Phys. Rev. Lett. 64, 1072 (1990)]

    Article  ADS  Google Scholar 

  253. S. E. Ralph, F. Capasso, and R. J. Malik, New photorefractive effect in graded-gap superlattices, Phys. Rev. Lett. 64, 1072 (1990)

    Article  ADS  Google Scholar 

  254. K. Inami, et al. (Belle), Search for the electric dipole moment of the tau lepton, Phys. Lett. B 551, 16 (2003), arXiv: hep-ex/0210066

    Article  ADS  Google Scholar 

  255. J. Bernabeu, G. A. Gonzalez-Sprinberg, and J. Vidal, CP violation and electric-dipole-moment at low energy tau production with polarized electrons, Nucl. Phys. B 763, 283 (2007), arXiv: hep-ph/0610135

    Article  ADS  Google Scholar 

  256. Y. S. Tsai, Production of polarized tau pairs and tests of CP violation using polarized e+− colliders near threshold, Phys. Rev. D 51, 3172 (1995), arXiv: hep-ph/9410265

    Article  ADS  Google Scholar 

  257. X. R. Zhou, Tau LFV decays: Super Tau Charm Factory, URL: indico.fnal.gov/event/44457/ (2020)

  258. A. V. Bobrov and A. E. Bondar, Search for τ → µ + γ decay at Super c−τ factory, Nucl. Phys. B Proc. Suppl. 225–227, 195 (2012), arXiv: 1206.1909 [hep-ex]

    Article  ADS  Google Scholar 

  259. T. Xiang, X.-D. Shi, D.-Y. Wang, and X.-R. Zhou, Sensitivity study of the charged lepton flavor violating process τ → γμ at STCF, (2023), arXiv: 2305.00483 [hep-ex]

  260. J. Z. Bai (BES), Measurement of the total cross section for hadronic production by e+e− annihilation at energies between 2.6–5 GeV, Phys. Rev. Lett. 84, 594 (2000)

    Article  ADS  Google Scholar 

  261. J. Z. Bai, et al. (BES), Measurements of the cross-section for e+e− → hadrons at center-of-mass energies from 2-GeV to 5-GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003

    Article  ADS  Google Scholar 

  262. V. V. Anashin, et al. (KEDR), Precise measurement of Ruds and R between 1.84 and 3.72 GeV at the KEDR detector, Phys. Lett. B 788, 42 (2019), arXiv: 1805.06235 [hep-ex]

    Article  ADS  Google Scholar 

  263. M. Baak and R. Kogler, in: 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2013), pp 349–358, arXiv: 1306.0571 [hep-ph]

  264. B. Abi, et al. (Muon g-2), Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]

    Article  ADS  Google Scholar 

  265. G. Sterman, J. Smith, J. C. Collins, J. Whitmore, R. Brock, J. Huston, J. Pumplin, W.-K. Tung, H. Weerts, C.-P. Yuan, S. Kuhlmann, S. Mishra, J. G. Morfín, F. Olness, J. Owens, J. Qiu, and D. E. Soper, Handbook of perturbative QCD, Rev. Mod. Phys. 67, 157 (1995)

    Article  ADS  Google Scholar 

  266. J. C. Collins and D. E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193, 381 (1981) [Erratum: Nucl. Phys. B 213, 545 (1983)]

    Article  ADS  Google Scholar 

  267. D. Pitonyak, M. Schlegel, and A. Metz, Polarized hadron pair production from electron–positron annihilation, Phys. Rev. D 89, 054032 (2014)

    Article  ADS  Google Scholar 

  268. J. Collins, Fragmentation of transversely polarized quarks probed in transverse momentum distributions, Nucl. Phys. B 396, 161 (1993)

    Article  ADS  Google Scholar 

  269. R. Seidl, et al. (Belle), Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at \(\sqrt s = 10.58 - {\rm{GeV}}\), Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975[hep-ex]

    Article  ADS  Google Scholar 

  270. P. Sun and F. Yuan, Energy evolution for the Sivers asymmetries in hard processes, Phys. Rev. D 88, 034016 (2013)

    Article  ADS  Google Scholar 

  271. B. Collaboration, J. Z. Bai, Y. Ban, and J. G. Bian, Observation of a near-threshold enhancement in th pp̄ mass spectrum from radiative J/ψ-γpp̄ p̄ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006[hep-ex]

    Article  ADS  Google Scholar 

  272. B. E. A. Aubert (BABAR), Study of e+e− → ΛΛ̄, ΛΣ̄0 Σ0Σ̄0 using initial state radiation with BABAR, Phys. Rev. D 76, 092006 (2007).

    Article  ADS  Google Scholar 

  273. P. E. A. Pakhlov (Belle), Measurement of the e+e− → J/ψcc̄ cross section at \(\sqrt s \approx 10.6\) GeV, Phys. Rev. D 79, 071101 (2009)

    Article  ADS  Google Scholar 

  274. Y.-Q. Ma, Y.-J. Zhang, and K.-T. Chao, QCD corrections to e+e− → J/ψgg at B factories, Phys. Rev. Lett. 102, 162002 (2008), arXiv: 0812.5106 [hep-ph]

    Article  ADS  Google Scholar 

  275. Y.-J. Zhang, Y.-Q. Ma, K. Wang, and K.-T. Chao, QCD radiative correction to color-octet J/ψ inclusive production at B factories, Phys. Rev. D 81, 034015 (2010)

    Article  ADS  Google Scholar 

  276. B. Gong and J.-X. Wang, Next-to-leading-order QCD corrections to e+e− → J/ψ gg at the B factories, Phys. Rev. Lett. 102, 162003 (2009), arXiv: 0901.0117 [hep-ph]

    Article  ADS  Google Scholar 

  277. B. Gong and J.-X. Wang, Next-to-leading-order QCD corrections to e+e− → J/ψcc̄ at the B factories, Phys. Rev. D 80, 054015 (2009)

    Article  ADS  Google Scholar 

  278. N. Brambilla, et al., Heavy quarkonium: progress, puzzles, and opportunities, Euro. Phys. J. C 71, 1534 (2011)

    Article  ADS  Google Scholar 

  279. T. B. Collaboration and K. Abe, Observation of double cc̄ Production in e+e− annihilation at \(\sqrt s = 10.6\,{\rm{GeV}}\), Phys. Rev. Lett. 89, 142001 (2002), arXiv: hep-ex/0205104 [hep-ex]

    Article  Google Scholar 

  280. F. Feng, Y. Jia, Z. Mo, W.-L. Sang, and J.-Y. Zhang, Next-to-next-to-leading-order QCD corrections to e+e− → J/ψ + ηc at B factories, arXiv: 1901.08447 (2019)

  281. Y.-J. Zhang, Y.-J. Gao, and K.-T. Chao, Next-to-leading order QCD correction to e+e− → J/ψ + ηc at \(\sqrt s = 10.6 - {\rm{GeV}}\), Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076

    Article  ADS  Google Scholar 

  282. Y.-J. Zhang and K.-T. Chao, Double-charm production e+e− → J/ψ + cc̄ at B factories with next-to-leading-order QCD corrections, Phys. Rev. Lett. 98, 092003 (2007)

    Article  ADS  Google Scholar 

  283. N. Brambilla, et al., QCD and strongly coupled gauge theories: Challenges and perspectives, Eur. Phys. J. C 74, 2981 (2014), arXiv: 1404.3723 [hep-ph]

    Article  Google Scholar 

  284. C. A. Meyer and Y. Van Haarlem, Status of exotic-quantum-number mesons, Phys. Rev. C 82, 025208 (2010)

    Article  ADS  Google Scholar 

  285. V. Crede and C. A. Meyer, The Experimental Status of Glueballs, Prog. Part. Nucl. Phys. 63, 74 (2008), arXiv: 0812.0600 [hep-ex]

    Article  ADS  Google Scholar 

  286. E. Klempt and A. Zaitsev, Glueballs, hybrids, multiquarks: Experimental facts versus QCD inspired concepts, Phys. Rep. 454, 1 (2007)

    Article  ADS  Google Scholar 

  287. C. Amsler and N. A. Törnqvist, Mesons beyond the naive quark model, Phys. Rep. 389, 61 (2004)

    Article  ADS  Google Scholar 

  288. S. Godfrey and J. Napolitano, Light-meson spectroscopy, Rev. Mod. Phys. 71, 1411 (1999)

    Article  ADS  Google Scholar 

  289. W.-J. Lee and D. Weingarten, Scalar quarkonium masses and mixing with the lightest scalar glueball, Phys. Rev. D 61, 014015 (2000), arXiv: hep-lat/9910008

    Article  ADS  Google Scholar 

  290. G. S. Bali, K. Schilling, A. Hulsebos, A. C. Irving, C. Michael, and P. W. Stephenson (UKQCD), A comprehensive lattice study of SU(3) glueballs, Phys. Lett. B 309, 378 (1993), arXiv: hep-lat/9304012

    Article  ADS  Google Scholar 

  291. C. J. Morningstar and M. J. Peardon, Efficient glueball simulations on anisotropic lattices, Phys. Rev. D 56, 4043 (1997), arXiv: hep-lat/9704011

    Article  ADS  Google Scholar 

  292. Y. Chen, et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73, 014516 (2006), arXiv: hep-lat/0510074

    Article  ADS  Google Scholar 

  293. P. Lacock, C. Michael, P. Boyle, and P. Rowland (UKQCD), Hybrid mesons from quenched QCD, Phys. Lett. B 401, 308 (1997), arXiv: hep-lat/9611011

    Article  ADS  Google Scholar 

  294. C. W. Bernard, et al. (MILC), Exotic mesons in quenched lattice QCD, Phys. Rev. D 56, 7039 (1997), arXiv: hep-lat/9707008

    Article  ADS  Google Scholar 

  295. J. J. Dudek, R. G. Edwards, B. Joo, M. J. Peardon, D. G. Richards, and C. E. Thomas, Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D 83, 111502 (2011), arXiv: 1102.4299 [hep-lat]

    Article  ADS  Google Scholar 

  296. J. J. Dudek, R. G. Edwards, P. Guo, and C. E. Thomas (Hadron Spectrum), Toward the excited isoscalar meson spectrum from lattice QCD, Phys. Rev. D 88, 094505 (2013), arXiv: 1309.2608[hep-lat]

    Article  ADS  Google Scholar 

  297. V. P. Druzhinin, S. I. Eidelman, S. I. Serednyakov, and E. P. Solodov, Hadron production via e+e− collisions with initial state radiation, Rev. Mod. Phys. 83, 1545 (2011), arXiv: 1105.4975 [hep-ex]

    Article  ADS  Google Scholar 

  298. K. T. Chao and Y. F. Wang, Front matter, International J. Mod. Phys. A 24, supp01 (2009)

    Google Scholar 

  299. M. Battaglieri, et al., Analysis tools for next-generation hadron spectroscopy experiments, Acta Phys. Polon. B 46, 257 (2015), arXiv: 1412.6393 [hep-ph]

    Article  ADS  Google Scholar 

  300. N. Berger, L. Beijiang, and W. Jike, Partial wave analysis using graphics processing units, J. Phys.: Conf. Ser. 219, 042031 (2010)

    Google Scholar 

  301. J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Ann. Phys. 158, 142 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  302. R. Kaiser and H. Leutwyler, Large Nc in chiral perturbation theory, Euro. Phys. J. C 17, 623 (2000)

    Article  ADS  Google Scholar 

  303. J. Wess and B. Zumino, Consequences of anomalous ward identities, Phys. Lett. B 37, 95 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  304. E. Witten, Global aspects of current algebra, Nucl. Phys. B 223, 422 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  305. J. Bijnens, A. Bramon, and F. Cornet, English Chiral perturbation theory for anomalous processes, Eur. Phys. J. C 46, 599 (1990)

    Google Scholar 

  306. J. Sakurai, Theory of strong interactions, Ann. Phys. 11, 1 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  307. L. Landsberg, Electromagnetic decays of light mesons, Phys. Rep. 128, 301 (1985)

    Article  ADS  Google Scholar 

  308. Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity (1), Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  309. Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity (II), Phys. Rev. 124, 246 (1961)

    Article  ADS  Google Scholar 

  310. T. Aoyama. et al. The anomalous magnetic moment of the muon in the Standard Model, Phys. Rep. 887, 1 (2020), the anomalous magnetic moment of the muon in the Standard Model

    Article  ADS  Google Scholar 

  311. L. Gan, B. Kubis, E. Passemar, and S. Tulin, Precision tests of fundamental physics with η and η′ mesons, Phys. Rep. 945, 1 (2022), precision tests of fundamental physics with η and η′ mesons

    Article  ADS  Google Scholar 

  312. C. Jarlskog and E. Shabalin, On searches for CP, T, CPT and C violation in flavour-changing and flavour-conserving interactions, Phys. Scr. 2002, 23 (2002)

    Article  Google Scholar 

  313. C. Jarlskog and E. Shabalin, ϵ′ and the decay η →ππ in a theory with both explicit and spontaneous CP violation, Phys. Rev. D 52, 6327 (1995)

    Article  ADS  Google Scholar 

  314. R. Escribano and E. Royo, A theoretical analysis of the semileptonic decays η(′) → π0l+l− and η′ → ηl+l−, Eur. Phys. J. C 80, 1190 (2020), arXiv: 2007.12467 [hep-ph]

    Article  ADS  Google Scholar 

  315. F. Niecknig, B. Kubis, and S. P. Schneider, Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72, 2014 (2012), arXiv: 1203.2501 [hep-ph]

    Article  ADS  Google Scholar 

  316. I. V. Danilkin, C. Fernández-Ramírez, P. Guo, V. Mathieu, D. Schott, M. Shi, and A. P. Szczepaniak, Dispersive analysis of ω/ϕ → 3π, πγ*, Phys. Rev. D 91, 094029 (2015)

    Article  ADS  Google Scholar 

  317. J.-J. Wu, X.-H. Liu, Q. Zhao, and B.-S. Zou, Puzzle of anomalously large isospin violations in η (1405/1475) → 3π, Phys. Rev. Lett. 108, 081803 (2012)

    Article  ADS  Google Scholar 

  318. J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Evidence for the 2π decay of the K 02 meson, Phys. Rev. Lett. 13, 138 (1964)

    Article  ADS  Google Scholar 

  319. B. E. A. Aubert (BABAR), Observation of CP violation in the B0 meson system, Phys. Rev. Lett. 87, 091801 (2001)

    Article  ADS  Google Scholar 

  320. K. Abe, et al. (Belle), Observation of large CP violation in the neutral B meson system, Phys. Rev. Lett. 87, 091802 (2001), arXiv: hep-ex/0107061

    Article  ADS  Google Scholar 

  321. J. F. Donoghue and S. Pakvasa, Signals of CP noncon-servation in hyperon decay, Phys. Rev. Lett. 55, 162 (1985)

    Article  ADS  Google Scholar 

  322. T. Holmstrom, et al., Search for CP violation in charged-Ξ and A hyperon decays, Phys. Rev. Lett. 93, 262001 (2004)

    Article  ADS  Google Scholar 

  323. J. Tandean and G. Valencia, CP violation in hyperon nonleptonic decays within the standard model, Phys. Rev. D 67, 056001 (2003)

    Article  ADS  Google Scholar 

  324. C. Materniak (HyperCP), Search for CP violation in E and A hyperon decays with the HyperCP spectrometer at Fermilab, Nucl. Phys. B Suppl. 187, 208 (2009)

    Article  ADS  Google Scholar 

  325. M. Ablikim, et al. (BESIII), Study of J/ψ and ψ (3686) decay to ΛΛ̄ and Σ0Σ̄0 final states, Phys. Rev. D 95, 052003 (2017)

    Article  ADS  Google Scholar 

  326. M. Ablikim, et al., Study of J/ψ and ψ (3686) → Σ̄(1385)0 Σ̄ and Ξ0Ξ̄0, Physics Letters B 770, 217 (2017), arXiv: 1612.08664 [hep-ex]

    Article  ADS  Google Scholar 

  327. M. Ablikim, et al. (BESIII), Study of ψ decays to the Ξ−Ξ̄+ and Σ(1385)∓Σ̄(1385)± final states, Phys. Rev. D 93, 072003 (2016)

    Article  ADS  Google Scholar 

  328. G. Fäldt and A. Kupsc, Hadronic structure functions in the e+e− → Λ̄Λ reaction, Phys. Lett. B 772, 16 (2017), arXiv: 1702.07288 [hep-ph]

    Article  ADS  Google Scholar 

  329. E. Perotti, G. Fäldt, A. Kupsc, S. Leupold, and J. J. Song, Polarization observables in e+e− annihilation to a baryon–antibaryon pair, Phys. Rev. D 99, 056008 (2019)

    Article  ADS  Google Scholar 

  330. M. Huang, et al. (HyperCP), New measurement of Ξ− → Λπ− decay parameters, Phys. Rev. Lett. 93, 011802 (2004)

    Article  ADS  Google Scholar 

  331. B. Dutta, Y. Mimura, and R. N. Mohapatra, Observable neutron antineutron oscillation in high scale seesaw models, Phys. Rev. Lett. 96, 061801 (2005), arXiv: hep-ph/0510291 [hep-ph]

    Article  ADS  Google Scholar 

  332. M. Baldo-Ceolin, P. Benetti, T. Bitter, F. Bobisut, E. Calligarich, R. Dolfini, D. Dubbers, P. El-Muzeini, M. Genoni, D. Gibin, A. Berzolari, K. Gobrecht, A. Guglielmi, J. Last, M. Laveder, W. Lippert, F. Mattioli, F. Mauri, M. Mezzetto, and L. Visentin, A new experimental limit on neutron–antineutron oscillations, Zeitsch. für Phys. C 63, 409 (1994)

    Google Scholar 

  333. X.-W. Kang, H.-B. Li, and G.-R. Lu, Study of Λ−Λ̄ oscillation in quantum coherent Λ−Λ̄ by using J/ψ → Λ−Λ̄ decay, Phys. Rev. D 81, 051901 (2010)

    Article  ADS  Google Scholar 

  334. R. H. Dalitz and G. Rajasekharan, The spins and lifetimes of the light hypernuclei, Phys. Lett. 1, 58 (1962)

    Article  ADS  Google Scholar 

  335. B. I. Abelev, et al. (STAR), Observation of an antimatter hypernucleus, Science 328, 58 (2010), arXiv: 1003.2030 [nucl-ex]

    Article  ADS  Google Scholar 

  336. C. Rappold, et al, On the measured lifetime of light hypernuclei 3Λ H and 4Λ H, Phys. Lett. B 728, 543 (2014)

    Article  ADS  Google Scholar 

  337. J. S. Schwinger, The Theory of quantized fields (1), Phys. Rev. 82, 914 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  338. S. Chekanov, et al. (ZEUS), Search for contact interactions, large extra dimensions and finite quark radius in ep collisions at HERA, Phys. Lett. B 591, 23 (2004), arXiv: hep-ex/0401009

    Article  ADS  Google Scholar 

  339. H. A. Bethe, The electromagnetic shift of energy levels, Phys. Rev. 72, 339 (1947)

    Article  ADS  Google Scholar 

  340. F. J. Dyson, The radiation theories of Tomonaga, Schwinger, and Feynman, Phys. Rev. 75, 486 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  341. K. G. Wilson and J. B. Kogut, The renormalization group and the epsilon expansion, Phys. Rep. 12, 75 (1974)

    Article  ADS  Google Scholar 

  342. S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B 96, 59 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  343. K. R. Schubert, T violation and CPT tests in neutralmeson systems, Prog. Part. Nucl. Phys. 81, 1 (2015), arXiv: 1409.5998 [hep-ex]

    Article  ADS  Google Scholar 

  344. J. S. Bell and J. Steinberger, in: Proceedings of the Oxford Int. Conf. on Elementary Particles (1965), pp 195–222

  345. B. Aubert, et al. (BaBar), Search for T, CP and CPT violation in B0−B̄0 mixing with inclusive dilepton events, Phys. Rev. Lett. 96, 251802 (2006), arXiv: hep-ex/0603053

    Article  ADS  Google Scholar 

  346. T. Higuchi, et al., Search for time-dependent CPT violation in hadronic and semileptonic B decays, Phys. Rev. D 85, 071105 (2012), arXiv: 1203.0930 [hep-ex]

    Article  ADS  Google Scholar 

  347. A. Apostolakis, et al., A Determination of the CP violation parameter η+− from the decay of strangeness tagged neutral kaons, Phys. Lett. B 458, 545 (1999)

    Article  ADS  Google Scholar 

  348. B. Schwingenheuer, et al., CPT tests in the neutral kaon system, Phys. Rev. Lett. 74, 4376 (1995)

    Article  ADS  Google Scholar 

  349. R. Essig, et al., in: Community Summer Study 2013: Snowmass on the Mississippi (2013), arXiv: 1311.0029 [hep-ph]

  350. O. Adriani, et al. (PAMELA), An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458, 607 (2009), arXiv: 0810.4995 [astro-ph]

    Article  ADS  Google Scholar 

  351. J. Chang, et al, An excess of cosmic ray electrons at energies of 300–800 GeV, Nature 456, 362 (2008)

    Article  ADS  Google Scholar 

  352. A. A. Abdo, et al. (Fermi-LAT), Measurement of the cosmic ray e+ plus e− spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102, 181101 (2009), arXiv: 0905.0025 [astro-ph.HE]

    Article  ADS  Google Scholar 

  353. M. Aguilar, et al., First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV, Phys. Rev. Lett. 110, 141102 (2013)

    Article  ADS  Google Scholar 

  354. N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, A theory of dark matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]

    Article  ADS  Google Scholar 

  355. M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671, 391 (2009), arXiv: 0810.1502 [hep-ph]

    Article  ADS  Google Scholar 

  356. N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12, 104 (2008), arXiv: 0810.0714 [hep-ph]

    Article  ADS  Google Scholar 

  357. C. Cheung, J. T. Ruderman, L.-T. Wang, and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80, 035008 (2009), arXiv: 0902.3246 [hep-ph]

    Article  ADS  Google Scholar 

  358. S.-h. Zhu, U-boson at BESIII, Phys. Rev. D75, 115004 (2007), arXiv: hep-ph/0701001

    ADS  Google Scholar 

  359. P. Fayet, U-boson production in e+e− annihilations, ψ and Υ decays, and light dark matter, Phys. Rev. D 75, 115017 (2007), arXiv: hep-ph/0702176

    Article  ADS  Google Scholar 

  360. M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07, 051 (2009), arXiv: 0904.1743 [hep-ph]

    Article  ADS  Google Scholar 

  361. R. Essig, P. Schuster, and N. Toro, Probing dark forces and light hidden sectors at low-energy e+e− colliders, Phys. Rev. D 80, 015003 (2009), arXiv: 0903.3941 [hep-ph]

    Article  ADS  Google Scholar 

  362. P.-F. Yin, J. Liu, and S.-H. Zhu, Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679, 362 (2009), arXiv: 0904.4644 [hep-ph]

    Article  ADS  Google Scholar 

  363. B. Aubert, et al. (BaBar), Search for dimuon decays of a light scalar boson in radiative transitions Υ → γA0, Phys. Rev. Lett. 103, 081803 (2009), arXiv: 0905.4539 [hep-ex]

    Article  ADS  Google Scholar 

  364. J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80, 075018 (2009), arXiv: 0906.0580 [hep-ph]

    Article  ADS  Google Scholar 

  365. S. Jia, et al. (Belle), Search for a light Higgs boson in single-photon decays of Υ(1S) using Υ(2S) → π+π−Υ(1S) tagging method, Phys. Rev. Lett. 128, 081804 (2022), arXiv: 2112.11852 [hep-ex]

    Article  ADS  Google Scholar 

  366. B. O’Leary, et al. (SuperB), SuperB progress reports–Physics, arXiv: 1008.1541 (2010)

  367. W. Altmannshofer, et al. (Belle-II), The Belle II physics book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]

    Google Scholar 

  368. H.-B. Li and T. Luo, Probing dark force at BES-III/ BEPCII, Phys. Lett. B 686, 249 (2010), arXiv: 0911.2067 [hep-ph]

    Article  ADS  Google Scholar 

  369. M. Baumgart, C. Cheung, J. T. Ruderman, L.-T. Wang, and I. Yavin, Non-Abelian dark sectors and their collider signatures, JHEP 04, 014 (2009), arXiv: 0901.0283 [hep-ph]

    Article  ADS  Google Scholar 

  370. B. Batell, M. Pospelov, and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79, 115008 (2009), arXiv: 0903.0363 [hep-ph]

    Article  ADS  Google Scholar 

  371. I. Adachi, et al. (Belle-II), Search for an invisibly decaying Z′ boson at Belle II in e+e− → μ+μ−(e±μ∓) plus missing energy final states, Phys. Rev. Lett. 124, 141801 (2020), arXiv: 1912.11276 [hep-ex]

    Article  ADS  Google Scholar 

  372. F. Abudinén, et al. (Belle-II), Search for axionlike particles produced in e+e− collisions at Belle II, Phys. Rev. Lett. 125, 161806 (2020), arXiv: 2007.13071 [hep-ex]

    Article  ADS  Google Scholar 

  373. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166, 196 (1986)

    Article  ADS  Google Scholar 

  374. B. Holdom, Searching for ϵ charges and a new U(1), Phys. Lett. B 178, 65 (1986)

    Article  ADS  Google Scholar 

  375. R. Foot and X.-G. He, Comment on zz-prime mixing in extended gauge theories, Phys. Lett. B 267, 509 (1991)

    Article  ADS  Google Scholar 

  376. B. Kors and P. Nath, A Stueckelberg extension of the standard model, Phys. Lett. B 586, 366 (2004), arXiv: hep-ph/0402047

    Article  ADS  Google Scholar 

  377. K. Cheung and T.-C. Yuan, Hidden fermion as millicharged dark matter in Stueckelberg Z-prime model, JHEP 03, 120 (2007), arXiv: hep-ph/0701107

    Article  ADS  Google Scholar 

  378. D. Feldman, Z. Liu, and P. Nath, Stueckelberg Z′ extension with kinetic mixing and millicharged dark matter from the hidden sector, Phys. Rev. D 75, 115001 (2007), arXiv: hep-ph/0702123

    Article  ADS  Google Scholar 

  379. J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010), arXiv: 1002.0329[hep-ph]

    Article  ADS  Google Scholar 

  380. Z. Liu and Y. Zhang, Probing millicharge at BESIII via monophoton searches, Phys. Rev. D 99, 015004 (2019), arXiv: 1808.00983 [hep-ph]

    Article  ADS  Google Scholar 

  381. J. Liang, Z. Liu, Y. Ma, and Y. Zhang, Millicharged particles at electron colliders, Phys. Rev. D 102, 015002 (2020), arXiv: 1909.06847 [hep-ph]

    Article  ADS  Google Scholar 

  382. S. Davidson, B. Campbell, and D. C. Bailey, Limits on particles of small electric charge, Phys. Rev. D 43, 2314 (1991)

    Article  ADS  Google Scholar 

  383. A. A. Prinz, et al., Search for millicharged particles at SLAC, Phys. Rev. Lett. 81, 1175 (1998), arXiv: hep-ex /9804008

    Article  ADS  Google Scholar 

  384. G. Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, Millicharged particles in neutrino experiments, Phys. Rev. Lett. 122, 071801 (2019), arXiv: 1806.03310[hep-ph]

    Article  ADS  Google Scholar 

  385. J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555, 67 (2018), arXiv: 1810.05912 [astro-ph.CO]

    Article  ADS  Google Scholar 

  386. J. B. Muñoz and A. Loeb, A small amount of minicharged dark matter could cool the baryons in the early universe, Nature 557, 684 (2018), arXiv: 1802.10094 [astro-ph.CO]

    Article  ADS  Google Scholar 

  387. A. Berlin, D. Hooper, G. Krnjaic, and S. D. McDermott, Severely constraining dark matter interpretations of the 21-cm anomaly, Phys. Rev. Lett. 121, 011102 (2018), arXiv: 1803.02804 [hep-ph]

    Article  ADS  Google Scholar 

  388. R. Barkana, N. J. Outmezguine, D. Redigolo, and T. Volansky, Strong constraints on light dark matter interpretation of the EDGES signal, Phys. Rev. D 98, 103005 (2018), arXiv: 1803.03091 [hep-ph]

    Article  ADS  Google Scholar 

  389. H.Brück, Circular particle accelerators, PUF, Paris (1966).

  390. KEK, URL: acc-physics.kek.jp/sad (2022)

  391. M. Battaglia, C. Da Via, D. Bortoletto, R. Brenner, M. Campbell, P. Collins, G. Dalla Betta, M. Demarteau, P. Denes, H. Graafsma, et al., R&d paths of pixel detectors for vertex tracking and radiation imaging, Nucl. Instrum. Methods Phys. Res. A 716, 29 (2013)

    Article  ADS  Google Scholar 

  392. G. Contin, E. Anderssen, L. Greiner, J. Schambach, J. Silber, T. Stezelberger, X. Sun, M. Szelezniak, C. Vu, H. Wieman, et al, The maps based PXL vertex detector for the star experiment, J. Instrum. 10, C03026 (2015)

    Article  Google Scholar 

  393. C. Lacasta, in: Proceedings of the 22nd International Workshop on Vertex Detectors (Vertex2013), 15–20 September (2013), page 5

  394. T. e. a. Abe, Belle II technical design report, (2010)

  395. A. Balla, G. Bencivenni, S. Cerioni, P. Ciambrone, E. De Lucia, D. Domenici, J. Dong, G. Felici, M. Gatta, M. Jacewicz, et al., in: 2011 IEEE Nuclear Science Symposium Conference Record (IEEE, 2011) pp 1002–1005

  396. G. Bencivenni, P. Branchini, P. Ciambrone, E. Czerwinski, E. De Lucia, A. Di Cicco, D. Domenici, G. Felici, X. Kang, and G. Morello, The cylindrical-gem inner tracker detector of the kloe-2 experiment, Nucl. Instrum. Meth. Phys. Res. A 958, 162366 (2020)

    Article  Google Scholar 

  397. A. Amoroso, R. Baldini, M. Bertani, D. Bettoni, F. Bianchi, A. Calcaterra, V. Carassiti, S. Cerioni, J. Chai, G. Cibinetto, et al., A cylindrical gem detector with analog readout for the be- siii experiment, Nucl. Instrum. Meth. Phys. Res. A 824, 515 (2016)

    Article  ADS  Google Scholar 

  398. M. P. Lener, G. Bencivenni, R. de Olivera, G. Felici, S. Franchino, M. Gatta, M. Maggi, G. Morello, and A. Sharma, The μ-RWELL: A compact, spark protected, single amplification-stage mpgd, Nucl. Instrum. Meth. Phys. Res. A 824, 565 (2016)

    Article  ADS  Google Scholar 

  399. G. Bencivenni, R. De Oliveira, G. Felici, M. Gatta, G. Morello, A. Ochi, M. P. Lener, and E. Tskhadadze, Performance of μ-RWELL detector vs resistivity of the resistive stage, Nucl. Instrum. Meth. Phys. Res. A 886, 36 (2018)

    Article  ADS  Google Scholar 

  400. G. Bencivenni, L. Benussi, L. Borgonovi, R. De Oliveira, P. De Simone, G. Felici, M. Gatta, P. Giacomelli, G. Morello, A. Ochi, et al., The μ-RWELL detector, J. Instrum. 12, C06027 (2017)

    Article  Google Scholar 

  401. S. Bachmann, A. Bressan, L. Ropelewski, F. Sauli, A. Sharma, and D. Mörmann, Charge amplification and transfer processes in the gas electron multiplier, Nucl. Instru. Meth. Phys. Res. A 438, 376 (1999)

    Article  ADS  Google Scholar 

  402. S. Agostinelli, J. Allison, K. A. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  403. G. Bencivenni, G. Felici, M. Gatta, M. Giovannetti, G. Morello, M. P. Lener, R. de Oliveira, A. Ochi, and E. Tskhadadze, in: Journal of Physics: Conference Series, Vol. 1498 (IOP Publishing, 2020), page 012003

  404. H. Wang, Y. Wang, Y.-Z. Yao, J. Hu, J. Yang, W. Hao, and Y.-Q. Luo, Aramid paper’s structure and performance and their effect on the mechanical properties of aramid paper honey-comb, J. Funct. Mater. 44, 2184 (2013)

    Google Scholar 

  405. S. Arezoo, V. Tagarielli, C. Siviour, and N. Petrinic, Compressive deformation of rohacell foams: Effects of strain rate and temperature, Inter. J. Impact Eng. 51, 50 (2013)

    Article  ADS  Google Scholar 

  406. G. Contin, E. Anderssen, L. Greiner, J. Schambach, J. Silber, T. Stezelberger, X. Sun, M. Szelezniak, C. Vu, H. Wieman, et al., The maps based pxl vertex detector for the star experiment, J. Instrum. 10, C03026 (2015)

    Article  Google Scholar 

  407. I. Valin, C. Hu-Guo, J. Baudot, G. Bertolone, A. Besson, C. Colledani, G. Claus, A. Dorokhov, G. Doziere, W. Dulinski, et al., A reticle size cmos pixel sensor dedicated to the star hft, J. Instrum. 7, C01102 (2012)

    Article  Google Scholar 

  408. B. Abelev, J. Adam, D. Adamová, M. Aggarwal, G. A. Rinella, M. Agnello, A. Agostinelli, N. Agrawal, Z. Ahammed, N. Ahmad, et al., Technical design report for the upgrade of the alice inner tracking system, J. Phys. G 41, 087002 (2014)

    Article  ADS  Google Scholar 

  409. G. A. Rinella, et al., The alpide pixel sensor chip for the upgrade of the alice inner tracking system, Nucl. Instrum. Meth. Phys. Res. A 845, 583 (2017)

    Article  ADS  Google Scholar 

  410. L. Chen, et al., Characterization of the prototype cmos pixel sensor Jadepix-1 for the CEPC vertex detector, (2019)

  411. C. S. Group, et al., CEPC conceptual design report: Volume 2–physics & detector, arXiv: 1811.10545 (2018)

  412. K. Arndt, H. Augustin, P. Baesso, N. Berger, F. Berg, C. Betancourt, D. Bortoletto, A. Bravar, K. Briggl, D. vom Bruch, et al., Technical design of the phase I MU3E experiment, Nucl. Instrum. Meth. Phys. Res. A 1014, 165679 (2021)

    Article  Google Scholar 

  413. M. Prathapan, R. Schimassek, M. Benoit, R. Casanova, F. Ehrler, A. Meneses, P. Pangaud, D. Sultan, E. Vilella, A. L. Weber, et al., in: Proceedings of Topical Workshop on Electronics for Particle Physics-PoS (TWEPP2019) (Sissa Medialab, 2020)

  414. S. Spannagel, Silicon technologies for the clic vertex detector, J. Instrum. 12, C06006 (2017)

    Article  Google Scholar 

  415. A. Schöning, J. Anders, H. Augustin, M. Benoit, N. Berger, S. Dittmeier, F. Ehrler, A. Fehr, T. Golling, S. G. Sevilla, et al., Mupix and atlaspix-architectures and results, arXiv: 2002.07253 (2020)

  416. W. Snoeys, et al., A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance, Nucl. Instrum. Meth. A 871, 90 (2017)

    Article  ADS  Google Scholar 

  417. G. Gustavino, et al., in: 23rd International Workshop on Radiation Imaging Detectors (2022), arXiv: 2209.14676 [physics.ins-det]

  418. A. Paladino, Beam background evaluation at superkekb and Belle II, J. Instrum. 15, C07023 (2020)

    Article  Google Scholar 

  419. M. Mager, A. collaboration, et al., Alpide, the monolithic active pixel sensor for the alice its upgrade, Nucl. Instrum. Meth. A 824, 434 (2016)

    Article  ADS  Google Scholar 

  420. M. Titov, in: Innovative Detectors for Supercolliders, World Scientific, 2004, pp 199–226

  421. M. Ablikim, Z. An, J. Bai, N. Berger, J. Bian, X. Cai, G. Cao, X. Cao, J. Chang, C. Chen, et al., Design and construction of the besiii detector, Nucl. Instrum. Meth. A 614, 345 (2010)

    Article  ADS  Google Scholar 

  422. T. Abe, I. Adachi, K. Adamczyk, S. Ahn, H. Aihara, K. Akai, M. Aloi, L. Andricek, K. Aoki, Y. Arai, et al., Belle II technical design report, arXiv: 1011.0352 (2010)

  423. S. Adhikari, C. Akondi, H. Al Ghoul, A. Ali, M. Amaryan, E. Anassontzis, A. Austregesilo, F. Barbosa, J. Barlow, A. Barnes, et al., The gluex beamline and detector, Nucl. Instrum. Meth. A 987, 164807 (2021)

    Article  Google Scholar 

  424. A. Baldini, E. Baracchini, C. Bemporad, F. Berg, M. Biasotti, G. Boca, P. Cattaneo, G. Cavoto, F. Cei, M. Chiappini, et al., The design of the meg ii experiment, Eur. Phys. J. C 78, 1 (2018)

    Article  Google Scholar 

  425. G. Tassielli, I. Collaboration, et al., in: 40th International Conference on High Energy physics (2021), p. 877

  426. I. B. Smirnov, Modeling of ionization produced by fast charged particles in gases, Nucl. Instrum. Meth. A 554, 474 (2005)

    Article  ADS  Google Scholar 

  427. X.-X. Cao, W.-D. Li, C.-L. Liu, Z.-P. Mao, S.-J. Chen, Z.-Y. Deng, K.-L. He, X.-T. Huang, B. Huang, Y.-P. Huang, et al., Studies of dE/dx measurements with the besiii, Chin. Phys. C 34, 1852 (2010)

    Article  ADS  Google Scholar 

  428. S. Bachmann, A. Bressan, L. Ropelewski, F. Sauli, A. Sharma, and D. Mörmann, Charge ampli fication and transfer processes in the gas electron multiplier, Nucl. Instrum. Meth. A 438, 376 (1999)

    Article  ADS  Google Scholar 

  429. F. Tessarotto, et al., Long term experience and performance of COMPASS RICH-1, JINST 9 (2014)

  430. A. Di Mauro, et al., Performance of large area CsI RICH prototypes for ALICE at LHC, Nucl. Instrum. Meth. A 433, 190 (1999)

    Article  ADS  Google Scholar 

  431. D. Boutigny, C. Goy, Y. Karyotakis, J. Lees, S. L. Rosier, A. Palano, G. Chen, Y. Wang, O. Wen, Y. Lan, et al., Babar technical design report, Stanford Linear Accelerator Center, Stanford, CA94309 (1995)

  432. B. Singh, W. Erni, B. Krusche, M. Steinacher, N. Walford, B. Liu, H. Liu, Z. Liu, X. Shen, C. Wang, et al., Technical design report for the barrel dirc detector, J. Phys. G 46, 045001 (2019)

    Article  ADS  Google Scholar 

  433. G. Kalicy, L. Allison, T. Cao, R. Dzhygadlo, T. Hartlove, T. Horn, C. Hyde, Y. Ilieva, P. Nadel-Turonski, K. Park, et al., High-performance dirc detector for the future electron ion collider experiment, J. Instrum. 13, C04018 (2018)

    Article  Google Scholar 

  434. M. J. Charles and R. Forty (LHCb), TORCH: Time of flight identification with Cherenkov radiation, Nucl. Instrum. Meth. A 639, 173 (2011), arXiv: 1009.3793 [physics.ins-det]

    Article  ADS  Google Scholar 

  435. B. Wu, Y. Wang, Q. Cao, Z. Li, X. Li, X. Zhou, Y. Hu, Z. Wang, M. Shao, J. Liu, et al., Design of time-to-digital converters for time-over-threshold measurement in picosecond timing detectors, IEEE Trans. Nucl. Sci. 68, 470 (2021)

    Article  ADS  Google Scholar 

  436. Y. Hu, Y. Wang, J. Kuang, and B. Wu, A clock distribution and synchronization scheme over optical links for large-scale physics experiments, IEEE Trans. Nucl. Sci. 68, 1351 (2021)

    Article  ADS  Google Scholar 

  437. M. Ablikim, Z. An, J. Bai, N. Berger, J. Bian, X. Cai, G. Cao, X. Cao, J. Chang, C. Chen, et al., Design and construction of the besiii detector, Nucl. Instrum. Meth. Phys. Res. A 614, 345 (2010)

    Article  ADS  Google Scholar 

  438. K. Miyabayashi, Belle electromagnetic calorimeter, Nucl. Instrum. Meth. Phys. Res. A 494, 298 (2002)

    Article  ADS  Google Scholar 

  439. A. Yamamoto, H. Kichimi, N. Kimura, H. Inoue, H. Yamaoka, T. Haruyama, T. Mito, O. Araoka, M. Tadano, S. Suzuki, et al., Performance of the topaz thin superconducting solenoid wound with internal winding method, Japan. J. Appl. Phys. 25, L440 (1986)

    Article  Google Scholar 

  440. A. M. Sirunyan, et al. (CMS), Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton–proton interactions, JINST 15, P10002 (2020), arXiv: 2006.14359 [physics. ins-det]

    Article  Google Scholar 

  441. G. S. Huang, The 15th International Workshop on Tau Lepton Physics, talk on “The Super Tau Charm Factory Plan in China” (2018)

  442. J. B. Liu, Joint Workshop on Future Tau-Charm Factories, talk on “Detector Concepts for the Super Tau-Charm Facility in China” (2018)

  443. T. Abe, I. Adachi, K. Adamczyk, S. Ahn, H. Aihara, K. Akai, M. Aloi, L. Andricek, K. Aoki, Y. Arai, et al., Belle II technical design report, arXiv: 1011.0352 (2010)

  444. K. Abe, Y. Hoshi, T. Nagamine, K. Neichi, K. Onodera, T. Takahashi, A. Yamaguchi, and H. Yuta, in: 2002 IEEE Nuclear Science Symposium Conference Record, Vol. 1 (IEEE, 2002), pp 171–175

  445. Y. Hoshi, N. Kikuchi, T. Nagamine, K. Neichi, and A. Yamaguchi, Performance of the endcap RPC in the Belle detector under high luminosity operation of the KEKB accelerator, Nucl. Phys. B 158, 190 (2006)

    Article  Google Scholar 

  446. K. Kanazawa, Y. Ohnishi, Y. Nakayama, C. Kiesling, S. Koblitz, et al., Beam background simulation for superKEKB/Belle-II, Proceed. IPAC 1109094, 3700 (2011)

    Google Scholar 

  447. M. Gouzevitch, F. Lagarde, I. Laktineh, V. Buridon, X. Chen, C. Combaret, A. Eynard, L. Germani, G. Grenier, H. Mathez, et al., High rate, fast timing glass rpc for the high ηcms muon detectors, arXiv: 1606.00993 (2016)

  448. A. Collaboration, et al., Atlas muon spectrometer: Technical design report (1997)

  449. B. Aubert, A. Bazan, A. Boucham, D. Boutigny, I. De Bonis, J. Favier, J.-M. Gaillard, A. Jeremie, Y. Karyotakis, T. Le Flour, et al., The babar detector, Nucl. Instrum. Meth. Phys. Res. A 479, 1 (2002)

    Article  ADS  Google Scholar 

  450. Belle-BaBar Workshop, talk on “RPC and Muon Detection at BELLE” (2002)

  451. K. Ackermann, N. Adams, C. Adler, Z. Ahammed, S. Ahmad, C. Allgower, J. Amonett, J. Amsbaugh, B. Anderson, M. Anderson, et al., Star detector overview, Nucl. Instrum. Meth. Phys. Res. A 499, 624 (2003)

    Article  ADS  Google Scholar 

  452. Y. Xie, et al., Performance study of rpc prototypes for the BESIII muon detector, Chin. Phys. C 31 (2007)

  453. F. An, J. Bai, A. Balantekin, H. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. Brown, I. Butorov, et al., The detector system of the daya bay reactor neutrino experiment, Nucl. Instrum. Meth. Phys. Res. A 811, 133 (2016)

    Article  ADS  Google Scholar 

  454. T. Aushev, D. Besson, K. Chilikin, R. Chistov, M. Danilov, P. Katrenko, R. Mizuk, G. Pakhlova, P. Pakhlov, V. Rusinov, et al., A scintillator based endcap KL and muon detector for the Belle II experiment, Nucl. Instrum. Meth. Phys. Res. A 789, 134 (2015)

    Article  ADS  Google Scholar 

  455. S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  456. Z. Fang, Y. Liu, H. Shi, J. Liu, and M. Shao, A hybrid muon detector design with rpc and plastic scintillator for the experiment at the super tau-charm facility, J. Instrum. 16, P09022 (2021)

    Article  Google Scholar 

  457. M. M. Hamada, P. R. Rela, F. E. da Costa, and C. H. de Mesquita, Radiation damage studies on the optical and mechanical properties of plastic scintillators, Nucl. Instrum. Meth. Phys. Res. A 422, 148 (1999)

    Article  ADS  Google Scholar 

  458. V. Vasil’Chenko, V. Lapshin, A. Peresypkin, A. Konstantinchenko, A. Pyshchev, V. Shershukov, B. Semenov, and A. Solov’ev, New results on radiation damage studies of plastic scintillators, Nucl. Instrum. Meth. A 369, 55 (1996)

    Article  ADS  Google Scholar 

  459. A. Yamamoto, T. Mito, N. Kimura, T. Haruyama, H. Yamaoka, O. Araoka, M. Tadano, S. Suzuki, Y. Kondo, M. Kawai, et al, Quench characteristics and operational stability of the topaz thin superconducting solenoid, Japan. J. Appl. Phys. 25, L443 (1986)

    Article  ADS  Google Scholar 

  460. G. Acquistapace, C. Collaboration, et al., Cms, the magnet project: Technical design report, Technical Design Report CMS (1997)

  461. X. Ma, et al., Determination of event start time at BESIII, Chin. Phys. C 32, 744 (2008)

    Article  ADS  Google Scholar 

  462. J. H. Zou, X. T. Huang, W. D. Li, T. Lin, T. Li, K. Zhang, Z. Y. Deng, and G. F. Cao, SNiPER: An offline software framework for non-collider physics experiments, J. Phys. Conf. Ser. 664, 072053 (2015)

    Article  Google Scholar 

  463. T. Li, X. Xia, X. Huang, J. Zou, W. Li, T. lin, K. Zhang, and Z. Deng, Design and Development of JUNO Event Data Model, Chin. Phys. C 41, 066201 (2017), arXiv: 1702.04100

    Article  ADS  Google Scholar 

  464. F. Gaede, B. Hegner, and G. A. Stewart, PODIO: recent developments in the Plain Old Data EDM toolkit, EPJ Web Conf. 245, 05024 (2020)

    Article  Google Scholar 

  465. H. Li, W. Huang, D. Liu, Y. Song, M. Shao, and X. Huang, Detector geometry management system designed for super tau charm facility offline software, J. Instrum. 16, T04004 (2021)

    Article  Google Scholar 

  466. M. Frank, F. Gaede, C. Grefe, and P. Mato, DD4hep: A detector description toolkit for high energy physics experiments, J. Phys. Conf. Ser. 513, 022010 (2014)

    Article  Google Scholar 

  467. Extensible Markup Language (XML) web page, URL: www.w3.org/XML/ (2022)

  468. S. Agostinelli, et al., GEANT4–a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  469. H. Li, W. H. Huang, D. Liu, Y. Song, M. Shao, and X. T. Huang, Detector geometry management system designed for Super Tau Charm Facility offline software, JINST 16, T04004 (2021)

    Article  ADS  Google Scholar 

  470. M. Ablikim, et al. (BESIII), Measurement of azimuthal asymmetries in inclusive charged dip- ion production in e+e− annihilations at \(\sqrt s = 3.65\,\,{\rm{GeV}}\), Phys. Rev. Lett. 116, 042001 (2016), arXiv: 1507.06824 [hep-ex]

    Article  ADS  Google Scholar 

  471. B. L. Wang, X. R. Lü, and Y. H. Zheng, Collins effect at super tau-charm facility, J. Univ. Chin. Acad. Sci. 38, 433 (2021)

    Google Scholar 

  472. M. Ablikim, et al. (BESIII), Observation of the leptonic decay D+ → τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]

    Article  ADS  Google Scholar 

  473. M. Ablikim, et al. (BESIII), Determination of the pseudoscalar decay constant \({f_{{D_s}^ + }}\) via Ds+ → μ+νμ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]

    Article  ADS  Google Scholar 

  474. H.-Y. Cheng, X.-R. Lyu, and Z.-Z. Xing, in: 2022 Snowmass Summer Study (2022), arXiv: 2203.03211 [hep-ph]

  475. M. Ablikim, et al. (BESIII), Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076 [hep-ex]

    Article  ADS  Google Scholar 

  476. A. Airapetian, et al. (HERMES), Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target, Phys. Rev. Lett. 94, 012002 (2005), arXiv: hep-ex/0408013

    Article  ADS  Google Scholar 

  477. A. Airapetian, et al. (HERMES), Effects of transversity in deep-inelastic scattering by polarized protons, Phys. Lett. B 693, 11 (2010), arXiv: 1006.4221[hep-ex]

    Article  ADS  Google Scholar 

  478. C. Adolph, et al. (COMPASS), Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries, Phys. Lett. B 717, 376 (2012), arXiv: 1205.5121 [hep-ex]

    Article  ADS  Google Scholar 

  479. X. Qian, et al. (Jefferson Lab Hall A), Single spin asymmetries in charged pion production from semiinclusive deep inelastic scattering on a transversely polarized 3 He target, Phys. Rev. Lett. 107, 072003 (2011), arXiv: 1106.0363 [nucl-ex]

    Article  ADS  Google Scholar 

  480. K. Abe, et al. (Belle), Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at Belle, Phys. Rev. Lett. 96, 232002 (2006), arXiv: hep-ex/0507063

    Article  ADS  Google Scholar 

  481. R. Seidl, et al. (Belle), Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e− annihilation at \(\sqrt s = 10.58 - {\rm{GeV}}\), Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975 [hep-ex]

    Article  ADS  Google Scholar 

  482. J. P. Lees, et al. (BaBar), Measurement of Collins asymmetries in inclusive production of charged pion pairs in e+e− annihilation at BABAR, Phys. Rev. D 90, 052003 (2014), arXiv: 1309.5278 [hep-ex]

    Article  ADS  Google Scholar 

  483. B. L. Wang, X.-R. Lyu, and Y. H. Zheng, Collins effect at super tau-charm facility, J. Univ. Chin. Acad. Sci. 38, 433 (2021)

    Google Scholar 

  484. I. I. Bigi and A. I. Sanda, A “known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037

    Article  ADS  Google Scholar 

  485. Y. Grossman and Y. Nir, CP violation in τ± → π±Ksν and D±→ π±KS: The importance of KS−KL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]

    Article  ADS  Google Scholar 

  486. J. P. Lees, et al. (BaBar), Search for CP violation in the decay τ− → π−K 0S (≥ Oπ0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]

    Article  ADS  Google Scholar 

  487. G. Bonvicini, et al. (CLEO), Search for CP violation in τ → Kπντ decays, Phys. Rev. Lett. 88, 111803 (2002), arXiv: hep-ex/0111095

    Article  ADS  Google Scholar 

  488. M. Bischofberger, et al. (Belle), Search for CP violation in τ → K 0S πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]

    Article  ADS  Google Scholar 

  489. J. H. Kuhn and E. Mirkes, Structure functions in tau decays, Z. Phys. C 56, 661 (1992) [Erratum: Z. Phys. C 67, 364 (1995)]

    Article  ADS  Google Scholar 

  490. S. Jadach, B. F. L. Ward, and Z. Was, The precision Monte Carlo event generator KK for two fermion final states in e+e− collisions, Comput. Phys. Commun. 130, 260 (2000), arXiv: hep-ph/9912214

    Article  ADS  Google Scholar 

  491. J. F. Donoghue, X.-G. He, and S. Pakvasa, Hyperon decays and CP nonconservation, Phys. Rev. D 34, 833 (1986)

    Article  ADS  Google Scholar 

  492. N. Salone, P. Adlarson, V. Batozskaya, A. Kupsc, S. Leupold, and J. Tandean, Study of CP violation in hyperon decays at super-charm-τ factories with a polarized electron beam, Phys. Rev. D 105, 116022 (2022), arXiv: 2203.03035 [hep-ph]

    Article  ADS  Google Scholar 

  493. D. Cronin-Hennessy, et al. (CLEO), Measurement of Charm Production Cross Sections in e+e− Annihilation at Energies between 3.97 and 4.26-GeV, Phys. Rev. D 80, 072001 (2009), arXiv: 0801.3418 [hep-ex]

    Article  ADS  Google Scholar 

  494. K. S. Babu and C. Kolda, Higgs mediated τ → 3μ in the supersymmetric seesaw model, Phys. Rev. Lett. 89, 241802 (2002), arXiv: hep-ph/0206310

    Article  ADS  Google Scholar 

  495. J. R. Ellis, J. Hisano, M. Raidal, and Y. Shimizu, A New parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66, 115013 (2002), arXiv: hep-ph/0206110

    Article  ADS  Google Scholar 

  496. F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity the-ories, Phys. Rev. Lett. 57, 961 (1986)

    Article  ADS  Google Scholar 

  497. E. Ma, Neutrino, lepton, and quark masses in supersymmetry, Phys. Rev. D 64, 097302 (2001), arXiv: hep-ph/0107177

    Article  ADS  Google Scholar 

  498. C.-X. Yue, Y.-M. Zhang, and L.-J. Liu, Nonuniversal gauge bosons Z-prime and lepton flavor violation tau decays, Phys. Lett. B 547, 252 (2002), arXiv: hep-ph/0209291

    Article  ADS  Google Scholar 

  499. J. E. Kim, P. Ko, and D.-G. Lee, More on r-parity-and lepton-family-number-violating couplings from muon(ium) conversion, and τ and π0 decays, Phys. Rev. D 56, 100 (1997)

    Article  ADS  Google Scholar 

  500. B. Aubert, et al. (BaBar), Searches for lepton flavor violation in the decays τ± → e±γ and τ± → μ±γ, Phys. Rev. Lett. 104, 021802 (2010), arXiv: 0908.2381 [hep-ex]

    Article  ADS  Google Scholar 

  501. K. Hayasaka, et al. (Belle), New search for τ → μγ and τ → eγ decays at Belle, Phys. Lett. B 666, 16 (2008), arXiv: 0705.0650 [hep-ex]

    Article  ADS  Google Scholar 

  502. G. Balossini, C. M. Carloni Calame, G. Montagna, O. Nicrosini, and F. Piccinini, Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys. B 758, 227 (2006), arXiv: hep-ph/0607181

    Article  ADS  Google Scholar 

  503. G. Balossini, C. Bignamini, C. M. C. Calame, G. Montagna, O. Nicrosini, and F. Piccinini, Photon pair production at flavour factories with per mille accuracy, Phys. Lett. B 663, 209 (2008), arXiv: 0801.3360 [hep-ph]

    Article  ADS  Google Scholar 

  504. G. Rodrigo, H. Czyz, J. H. Kuhn, and M. Szopa, Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, Eur. Phys. J. C 24, 71 (2002), arXiv: hep-ph/0112184

    Article  ADS  Google Scholar 

  505. S. Actis, et al. (Working Group on Radiative Corrections, Monte Carlo generators for low energies), Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66, 585 (2010), arXiv: 0912.0749 [hep-ph]

    Article  ADS  Google Scholar 

  506. C. Sturm, Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED, Nucl. Phys. B 874, 698 (2013), arXiv: 1305.0581 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  507. F. Jegerlehner, The Running fine structure constant alpha(E) via the Adler function, Nucl. Phys. B Suppl. 181–182, 135 (2008), arXiv: 0807.4206 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Sergey Barsuk (IN2P3-CNRS & Université Paris 11, France), Alexander Bonder (Novosibirsk State University & Budker Institute of Nuclear Physics, Russia), Oliver Callot (IN2P3/CNRS & Université Paris 11, France), Wolfgang Kühn (Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Germany), Cheng Li (University of Science and Technology of China, China), Jin Li (Institute of High Energy Physics, China), Weiguo Li (Institute of High Energy Physics, China), Alexey Petrov (University of South Carolina, USA), Yuri Tikhonov (Budker Institute of Nuclear Physics, Russia), and Changzheng Yuan (Institute of High Energy Physics, China; University of Chinese Academy of Sciences, China) for their reviewing of this report. We would like to thank Andrzej Kupsc (National Centre for Nuclear Research, Poland; Uppsala University, Sweden) for his contribution to this report. We thank the University of Science and Technology of China, the Hefei Comprehensive National Science Center, State Key Laboratory of Particle Detection and Electronics, and National Synchrotron Radiation Laboratory for their strong support. The research work leading to this report was supported by the National Key R&D Program of China under Contract No. 2022YFA1602200, the International Partnership Program of the Chineses Academy of Sciences under Grant No. 211134KYSB20200057 and the STCF Key Technology Research and Development Project.

Author information

Authors and Affiliations

  1. Anhui University, Hefei, 230039, China

    Q. G. Wen

  2. Beihang University, Beijing, 100191, China

    T. G. Cheng, L. S. Geng, F. K. Guo, J. X. Lu, X. P. Wang, K. P. Xie, L. Yuan, Q. A. Zhang, Y. J. Zhang & X. P. Zhou

  3. Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia

    M. Achasov, A. Barnyakov, V. Blinov, V. Bobrovnikov, A. Bogomyagkov, A. Bondar, V. Druzhinin, D. Epifanov, G. Fedotovich, V. Ivanov, I. Koop, E. Kravchenko, A. Kuzmin, E. Levichev, I. Logashenko, P. Lukin, D. Matvienko, S. Pivovarov, E. Pyata, L. Shekhtman, B. Shwartz, A. Sokolov, A. Sukharev, Y. Tikhonov, K. Todyshev, V. Vorobyev & V. Zhulanov

  4. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China

    J. M. Dias, A. Guevara, F. K. Guo, M. J. Yan, X. Zhang & B. S. Zou

  5. Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK

    M. Kenzie

  6. Central China Normal University, Wuhan, 430079, China

    K. Chen, S. L. Chen, X. Q. Li, F. Liu, X. F. Luo, X. M. Sun, Y. P. Wang, Y. H. Xie, H. Yin, X. B. Yuan, B. W. Zhang & X. K. Zhou

  7. Central South University, Changsha, 410083, China

    Y. Lu, C. W. Xiao & X. N. Xiong

  8. China University of Geosciences, Wuhan, 430074, China

    X. L. Kang, X. Y. Peng & L. Zheng

  9. China University of Mining and Technology, Xuzhou, 221116, China

    X. H. Hu & Y. Xing

  10. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

    Y. X. Song

  11. Fudan University, Shanghai, 200433, China

    Y. P. Guo, T. Liu, T. Luo, C. P. Shen & L. Yan

  12. Goethe University Frankfurt, D-60325, Frankfurt am Main, Germany

    K. Peters

  13. Guangxi Normal University, Guilin, 541004, China

    G. R. Liao, L. Q. Qin, D. H. Wei & C. W. Xiao

  14. Guangxi Uninversity, Nanning, 530004, China

    Y. B. Huang, S. Z. Jiang & H. B. Liu

  15. Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China

    C. Q. Geng, G. Li, C. W. Liu, Y. Ma, B. D. Wan, T. W. Wu & Y. L. Zhou

  16. Hebei Normal University, Shijiazhuang, 050024, China

    Z. H. Guo

  17. Hebei University, Baoding, 071002, China

    G. L. Wang & Y. Q. Wang

  18. Hefei University of Technology, Hefei, 230601, China

    Y. Zhang

  19. Helmholtz Institute Mainz, Staudinger Weg 18, D-55099, Mainz, Germany

    A. Denig & F. Maas

  20. Henan Normal University, Xinxiang, 453007, China

    F. M. Cai, J. J. Cao, Q. Chang, L. L. Chen, X. Q. Hao, Y. L. He, Z. X. Heng, Q. P. Ji, H. J. Li, W. J. Li, L. L. Shang, J. J. Song, J. F. Sun, X. C. Wang, X. L. Wang, Y. L. Wang, X. S. Yan, B. F. Yang, Y. D. Yang, Y. L. Yang, Y. F. Yue, G. Y. Zhang & H. J. Zhou

  21. Henan University, Kaifeng, 475004, China

    T. Gong, G. Y. Wang, J. L. Zhang, J. Zhao & J. Y. Zhu

  22. High Energy Physics Center, Chung-Ang University, Seoul, 06974, Korea

    S. L. Olsen

  23. Higher School of Economy 11 Pokrovsky Bulvar, Moscow, 109028, Russia

    D. Bodrov, P. Pakhlov & G. Pakhlova

  24. Huangshan University, Huangshan, 245000, China

    Z. Jiao & H. J. Lyu

  25. Hubei University of Automotive Technology, Shiyan, 442002, China

    L. Z. Liao

  26. Hunan Normal University, Changsha, 410081, China

    L. C. Gui, Q. F. Lü, W. Shan & X. H. Zhong

  27. Hunan University of Science and Technology, Xiangtan, 411201, China

    H. L. Li & L. Peng

  28. Hunan University, Changsha, 410082, China

    S. Cheng, L. Y. Dai, J. M. Shen, D. L. Yao, J. S. Yu, J. Q. Yu & S. L. Zhang

  29. Indiana University, Bloomington, Indiana, 47405, USA

    R. Mitchell & E. Passemar

  30. Inner Mongolia University, Hohhot, 010021, China

    R. H. Li, Q. N. Xu, Z. X. Zhao & S. H. Zhou

  31. Institute of Advanced Science Facilities, Shenzhen, 518107, China

    G. Q. Zhang

  32. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China

    Y. Chen, L. Y. Dong, S. S. Fang, H. M. Hu, H. B. Li, J. Li, B. J. Liu, Q. Ouyang, M. L. Wang, Z. Z. Xing, Q. Zhao & K. Zhu

  33. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China

    X. Cao, X. R. Chen, L. M. Duan, B. Gou, A. Q. Guo, Z. B. He, R. J. Hu, X. J. Huang, D. Y. Li, X. Li, Z. J. Li, Y. T. Liang, D. X. Lin, C. G. Lu, P. Ma, Y. M. Ma, Y. Qian, T. L. Qiu, Z. P. Sun, Y. Tian, R. Wang, X. L. Wei, X. J. Wen, H. R. Yang, Y. S. Yang, X. H. Yin, H. Y. Zhao, Y. X. Zhao & B. S. Zou

  34. Institute of Physics, Academia Sinica, Taipei, Taiwan, 11529, China

    H. Y. Cheng

  35. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China

    J. P. Ma

  36. Jilin University, Changchun, 130012, China

    Y. Q. Chen & W. M. Song

  37. Jinan University, Guangzhou, 510632, China

    F. R. Xu

  38. Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099, Mainz, Germany

    R. Aliberti, A. Denig, W. Gradl, N. Hüsken, F. Maas & C. F. Redmer

  39. Joint Institute for Nuclear Research, 141980, Dubna, Moscow region, Russia

    O. Bakina, I. Boyko, D. Dedovich, I. Denisenko, A. Guskov, Y. Nefedov & A. Zhemchugov

  40. Josef Stefan Institute, 1000, Ljubljana, Slovenia

    A. Nefediev & V. Zhukova

  41. Lanzhou University, Lanzhou, 730000, China

    Z. G. Du, P. R. Li, K. Liu, X. Liu, Z. Y. Liu, X. J. Peng, X. F. Wang, D. Xiao, S. Y. You & F. S. Yu

  42. Liaoning Normal University, Dalian, 116029, China

    C. H. Li & Y. B. Zuo

  43. Liaoning University, Shenyang, 110036, China

    L. Gong, X. S. Kang, K. Y. Liu & Y. Xu

  44. Nanjing Normal University, Nanjing, 210023, China

    L. Wu & R. L. Zhu

  45. Nanjing University, Nanjing, 210023, China

    Z. W. Liu

  46. Nankai University, Tianjin, 300071, China

    C. X. Yu & M. G. Zhao

  47. Nanyang Normal University, Nanyang, 473061, China

    J. S. Huang

  48. North China Electric Power University, Beijing, 102206, China

    J. Cheng, Y. D. Wang, Z. G. Wang, Y. P. Xu & G. L. Yu

  49. Northwestern Polytechnical University, Xi’an, 710072, China

    Y. C. Hu, J. Wang, X. M. Wei, F. F. Xue, R. G. Zhao & R. Zheng

  50. Novosibirsk State Technical University, Novosibirsk, 630073, Russia

    A. Barnyakov, V. Blinov & I. Koop

  51. Novosibirsk State University, Novosibirsk, 630090, Russia

    V. Blinov, V. Bobrovnikov, I. Koop, E. Kravchenko, A. Sukharev & K. Todyshev

  52. P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, 119991, Russia

    G. Pakhlova & T. Uglov

  53. Particle and Nuclear Physics Institute, Institute for Basic Science, Daejeon, 34126, Korea

    S. L. Olsen

  54. Peking University, Beijing, 100871, China

    L. P. An, Q. H. Cao, K. T. Chao, X. C. Dai, X. Feng, Y. N. Gao, W. H. Hu, J. Liu, M. Saur, D. Y. Wang, T. Xiang, Z. W. Yang, Z. Y. Yuan, Y. X. Zhang & S. H. Zhu

  55. Qufu Normal University, Qufu, 273165, China

    C. Li & G. Li

  56. Renmin University of China, Beijing, 100872, China

    L. Li

  57. Shandong University, Jinan, 250100, China

    K. Hu, X. T. Huang, J. Jiang, J. B. Jiao, T. Li, Z. Q. Liu, X. S. Qin, C. Yang & L. Zhang

  58. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China

    J. F. Chen, X. F. Chen & D. Z. Ding

  59. Shanghai Jiao Tong University, Shanghai, 200240, China

    J. Gao, J. Guo, X. G. He, L. Li, S. Li, K. Liu, S. B. Wang, W. Wang, H. J. Yang & T. Zhang

  60. Soochow University, Suzhou, 215006, China

    D. Bodrov, Y. Lei, X. Pan, X. P. Xu & R. D. Zhu

  61. South China Normal University, Guangzhou, 510006, China

    J. Hua, H. N. Li, J. H. Liang, Y. Liao, G. M. Liu & H. L. Wang

  62. Southeast University, Nanjing, 211189, China

    Y. Bai, D. Y. Chen, H. X. Chen, S. Jia, Z. Lu, Y. Pan, P. Wu, Y. C. Zhang, H. Q. Zhou & Z. Y. Zhou

  63. State Key Laboratory of Particle Detection and Electronics, Beijing, 100049, China

    Q. An, X. Z. Bai, Z. Cao, W. H. Dong, D. S. Du, Z. J. Fang, C. Q. Feng, Y. T. Feng, J. L. Gu, J. C. Guo, L. Han, M. Han, S. Q. He, B. L. Hou, G. S. Huang, Z. K. Jia, F. Li, H. Li, J. M. Li, L. Y. Li, X. H. Li, H. Liang, X. S. Lin, D. Liu, J. B. Liu, L. Liu, S. B. Liu, Y. W. Liu, Y. L. Liu, Y. Long, N. Lu, Q. Ouyang, Y. P. Pei, H. P. Peng, B. B. Qi, Y. Q. Qi, J. J. Qin, H. Y. Sang, X. Y. Shan, M. Shao, Z. T. Shen, H. C. Shi, X. D. Shi, Y. Song, Y. J. Sun, S. S. Tang, Z. B. Tang, C. H. Tian, B. Wang, J. H. Wang, J. C. Wang, R. Wang, W. P. Wang, X. L. Wang, Y. G. Wang, Z. Y. Wang, B. Wu, Y. S. Wu, L. Xia, L. L. Xu, X. C. Xu, Z. Z. Xu, D. W. Xuan, W. B. Yan, H. T. Yang, J. F. Yang, Z. Y. Yang, H. L. Yu, A. L. Zhang, H. J. Zhang, Y. Zhang, Y. F. Zhang, Y. L. Zhang, Z. Y. Zhang, L. Zhao, Z. G. Zhao, H. Zhou, X. R. Zhou, Y. Zhou, Y. C. Zhu & Z. A. Zhu

  64. Sun Yat-Sen University, Guangzhou, 510275, China

    W. Chen, Y. S. Huang, N. Li, J. Tang, Z. Y. You, J. Zhang & Y. M. Zhang

  65. Thomas Jefferson National Accelerator Facility, Newport News, VA, 23606, USA

    E. Passemar

  66. Tsinghua University, Beijing, 100084, China

    S. M. Chen, M. Zeng & L. M. Zhang

  67. Universitat de València, E-46071, València, Spain

    E. Passemar

  68. University of Bristol, Bristol, BS8 1TL, UK

    J. Rademacker

  69. University of Chinese Academy of Sciences, Beijing, 100049, China

    S. Chen, S. P. Chen, J. L. Fu, F. K. Guo, K. L. Han, J. B. He, Y. R. Hou, M. Huang, Q. Y. Huang, W. Q. Huang, H. J. Jing, H. B. Li, C. X. Lin, Q. Liu, Y. Lu, X. R. Lyu, W. B. Qian, C. F. Qiao, B. L. Wang, Z. L. Wang, J. J. Wu, S. L. Yang, Y. H. Yang, H. B. Zhang, J. Y. Zhang, R. P. Zhao, Y. H. Zheng, Y. X. Zhou & B. S. Zou

  70. University of Jinan, Jinan, 250022, China

    Z. X. Meng

  71. University of Oxford, Keble Road, Oxford, OX13RH, UK

    A. Gilman, S. Malde & G. Wilkinson

  72. University of Science and Technology of China, Hefei, 230026, China

    Q. An, X. Z. Bai, Z. Cao, W. H. Dong, D. S. Du, Z. J. Fang, C. Q. Feng, Y. T. Feng, J. L. Gu, J. C. Guo, L. Han, M. Han, S. Q. He, B. L. Hou, G. S. Huang, Z. K. Jia, F. Li, H. Li, J. M. Li, L. Y. Li, X. H. Li, Y. Y. Li, H. Liang, X. S. Lin, D. Liu, J. B. Liu, L. Liu, S. B. Liu, Y. W. Liu, Y. L. Liu, Y. Long, N. Lu, Y. P. Pei, H. P. Peng, B. B. Qi, Y. Q. Qi, J. J. Qin, H. Y. Sang, X. Y. Shan, M. Shao, Z. T. Shen, H. C. Shi, X. D. Shi, Y. Song, Y. J. Sun, S. S. Tang, Z. B. Tang, C. H. Tian, B. Wang, J. H. Wang, J. C. Wang, R. Wang, W. P. Wang, X. L. Wang, Y. G. Wang, Z. Y. Wang, B. Wu, Y. S. Wu, L. Xia, L. L. Xu, X. C. Xu, Z. Z. Xu, D. W. Xuan, W. B. Yan, H. T. Yang, J. F. Yang, Z. Y. Yang, H. L. Yu, A. L. Zhang, H. J. Zhang, Y. Zhang, Y. F. Zhang, Y. L. Zhang, Z. Y. Zhang, L. Zhao, Z. G. Zhao, H. Zhou, X. R. Zhou, Y. Zhou, Y. C. Zhu & Z. A. Zhu

  73. University of Shanghai for Science and Technology, Shanghai, 200093, China

    Z. H. Bu, P. S. Ge, Z. Y. Wang & Q. B. Zheng

  74. University of South China, Hengyang, 421001, China

    X. Chen, T. J. Hou, C. Y. Hu, X. H. Li, J. J. Liu, F. J. Luo, J. J. Qin, X. D. Wang, M. Xiao, S. Zeng, Y. Zhang, Z. H. Zhang & B. Zheng

  75. University of Wisconsin-Madison, Wisconsin-Madison, Madison, Wisconsin, 53706, USA

    R. Zhang

  76. University Münster, Wilhelm-Klemm-Str.9, 48149, Münster, Germany

    A. Khoukaz

  77. Wuhan University, Wuhan, 430072, China

    H. Cai, Y. J. Du, Y. L. Fan, J. J. Jia, H. B. Jiang, L. Sun, Z. Y. Zhang & X. Zhou

  78. Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an, 710119, China

    P. Chen & J. S. Tian

  79. Yantai University, Yantai, 264005, China

    Y. Li & Y. C. Xu

  80. Yunnan University, Kunming, 650500, China

    J. P. Dai

  81. Zhejiang University, Hangzhou, 310027, China

    H. Chen & N. Yokozaki

  82. Zhengzhou University, Zhengzhou, 450001, China

    X. C. Ai, B. C. Ke, Y. Liu, J. Xu, W. C. Yan & Y. T. Zhang

  83. State Key Laboratory of Particle Detection and Electronics, Hefei, 230026, China

    Q. An, X. Z. Bai, Z. Cao, W. H. Dong, D. S. Du, Z. J. Fang, C. Q. Feng, Y. T. Feng, J. L. Gu, J. C. Guo, L. Han, M. Han, S. Q. He, B. L. Hou, G. S. Huang, Z. K. Jia, F. Li, H. Li, J. M. Li, L. Y. Li, X. H. Li, H. Liang, X. S. Lin, D. Liu, J. B. Liu, L. Liu, S. B. Liu, Y. W. Liu, Y. L. Liu, Y. Long, N. Lu, Q. Ouyang, Y. P. Pei, H. P. Peng, B. B. Qi, Y. Q. Qi, J. J. Qin, H. Y. Sang, X. Y. Shan, M. Shao, Z. T. Shen, H. C. Shi, X. D. Shi, Y. Song, Y. J. Sun, S. S. Tang, Z. B. Tang, C. H. Tian, B. Wang, J. H. Wang, J. C. Wang, R. Wang, W. P. Wang, X. L. Wang, Y. G. Wang, Z. Y. Wang, B. Wu, Y. S. Wu, L. Xia, L. L. Xu, X. C. Xu, Z. Z. Xu, D. W. Xuan, W. B. Yan, H. T. Yang, J. F. Yang, Z. Y. Yang, H. L. Yu, A. L. Zhang, H. J. Zhang, Y. Zhang, Y. F. Zhang, Y. L. Zhang, Z. Y. Zhang, L. Zhao, Z. G. Zhao, H. Zhou, X. R. Zhou, Y. Zhou, Y. C. Zhu & Z. A. Zhu

Authors
  1. M. Achasov
    View author publications

    Search author on:PubMed Google Scholar

  2. X. C. Ai
    View author publications

    Search author on:PubMed Google Scholar

  3. L. P. An
    View author publications

    Search author on:PubMed Google Scholar

  4. R. Aliberti
    View author publications

    Search author on:PubMed Google Scholar

  5. Q. An
    View author publications

    Search author on:PubMed Google Scholar

  6. X. Z. Bai
    View author publications

    Search author on:PubMed Google Scholar

  7. Y. Bai
    View author publications

    Search author on:PubMed Google Scholar

  8. O. Bakina
    View author publications

    Search author on:PubMed Google Scholar

  9. A. Barnyakov
    View author publications

    Search author on:PubMed Google Scholar

  10. V. Blinov
    View author publications

    Search author on:PubMed Google Scholar

  11. V. Bobrovnikov
    View author publications

    Search author on:PubMed Google Scholar

  12. D. Bodrov
    View author publications

    Search author on:PubMed Google Scholar

  13. A. Bogomyagkov
    View author publications

    Search author on:PubMed Google Scholar

  14. A. Bondar
    View author publications

    Search author on:PubMed Google Scholar

  15. I. Boyko
    View author publications

    Search author on:PubMed Google Scholar

  16. Z. H. Bu
    View author publications

    Search author on:PubMed Google Scholar

  17. F. M. Cai
    View author publications

    Search author on:PubMed Google Scholar

  18. H. Cai
    View author publications

    Search author on:PubMed Google Scholar

  19. J. J. Cao
    View author publications

    Search author on:PubMed Google Scholar

  20. Q. H. Cao
    View author publications

    Search author on:PubMed Google Scholar

  21. X. Cao
    View author publications

    Search author on:PubMed Google Scholar

  22. Z. Cao
    View author publications

    Search author on:PubMed Google Scholar

  23. Q. Chang
    View author publications

    Search author on:PubMed Google Scholar

  24. K. T. Chao
    View author publications

    Search author on:PubMed Google Scholar

  25. D. Y. Chen
    View author publications

    Search author on:PubMed Google Scholar

  26. H. Chen
    View author publications

    Search author on:PubMed Google Scholar

  27. H. X. Chen
    View author publications

    Search author on:PubMed Google Scholar

  28. J. F. Chen
    View author publications

    Search author on:PubMed Google Scholar

  29. K. Chen
    View author publications

    Search author on:PubMed Google Scholar

  30. L. L. Chen
    View author publications

    Search author on:PubMed Google Scholar

  31. P. Chen
    View author publications

    Search author on:PubMed Google Scholar

  32. S. L. Chen
    View author publications

    Search author on:PubMed Google Scholar

  33. S. M. Chen
    View author publications

    Search author on:PubMed Google Scholar

  34. S. Chen
    View author publications

    Search author on:PubMed Google Scholar

  35. S. P. Chen
    View author publications

    Search author on:PubMed Google Scholar

  36. W. Chen
    View author publications

    Search author on:PubMed Google Scholar

  37. X. Chen
    View author publications

    Search author on:PubMed Google Scholar

  38. X. F. Chen
    View author publications

    Search author on:PubMed Google Scholar

  39. X. R. Chen
    View author publications

    Search author on:PubMed Google Scholar

  40. Y. Chen
    View author publications

    Search author on:PubMed Google Scholar

  41. Y. Q. Chen
    View author publications

    Search author on:PubMed Google Scholar

  42. H. Y. Cheng
    View author publications

    Search author on:PubMed Google Scholar

  43. J. Cheng
    View author publications

    Search author on:PubMed Google Scholar

  44. S. Cheng
    View author publications

    Search author on:PubMed Google Scholar

  45. T. G. Cheng
    View author publications

    Search author on:PubMed Google Scholar

  46. J. P. Dai
    View author publications

    Search author on:PubMed Google Scholar

  47. L. Y. Dai
    View author publications

    Search author on:PubMed Google Scholar

  48. X. C. Dai
    View author publications

    Search author on:PubMed Google Scholar

  49. D. Dedovich
    View author publications

    Search author on:PubMed Google Scholar

  50. A. Denig
    View author publications

    Search author on:PubMed Google Scholar

  51. I. Denisenko
    View author publications

    Search author on:PubMed Google Scholar

  52. J. M. Dias
    View author publications

    Search author on:PubMed Google Scholar

  53. D. Z. Ding
    View author publications

    Search author on:PubMed Google Scholar

  54. L. Y. Dong
    View author publications

    Search author on:PubMed Google Scholar

  55. W. H. Dong
    View author publications

    Search author on:PubMed Google Scholar

  56. V. Druzhinin
    View author publications

    Search author on:PubMed Google Scholar

  57. D. S. Du
    View author publications

    Search author on:PubMed Google Scholar

  58. Y. J. Du
    View author publications

    Search author on:PubMed Google Scholar

  59. Z. G. Du
    View author publications

    Search author on:PubMed Google Scholar

  60. L. M. Duan
    View author publications

    Search author on:PubMed Google Scholar

  61. D. Epifanov
    View author publications

    Search author on:PubMed Google Scholar

  62. Y. L. Fan
    View author publications

    Search author on:PubMed Google Scholar

  63. S. S. Fang
    View author publications

    Search author on:PubMed Google Scholar

  64. Z. J. Fang
    View author publications

    Search author on:PubMed Google Scholar

  65. G. Fedotovich
    View author publications

    Search author on:PubMed Google Scholar

  66. C. Q. Feng
    View author publications

    Search author on:PubMed Google Scholar

  67. X. Feng
    View author publications

    Search author on:PubMed Google Scholar

  68. Y. T. Feng
    View author publications

    Search author on:PubMed Google Scholar

  69. J. L. Fu
    View author publications

    Search author on:PubMed Google Scholar

  70. J. Gao
    View author publications

    Search author on:PubMed Google Scholar

  71. Y. N. Gao
    View author publications

    Search author on:PubMed Google Scholar

  72. P. S. Ge
    View author publications

    Search author on:PubMed Google Scholar

  73. C. Q. Geng
    View author publications

    Search author on:PubMed Google Scholar

  74. L. S. Geng
    View author publications

    Search author on:PubMed Google Scholar

  75. A. Gilman
    View author publications

    Search author on:PubMed Google Scholar

  76. L. Gong
    View author publications

    Search author on:PubMed Google Scholar

  77. T. Gong
    View author publications

    Search author on:PubMed Google Scholar

  78. B. Gou
    View author publications

    Search author on:PubMed Google Scholar

  79. W. Gradl
    View author publications

    Search author on:PubMed Google Scholar

  80. J. L. Gu
    View author publications

    Search author on:PubMed Google Scholar

  81. A. Guevara
    View author publications

    Search author on:PubMed Google Scholar

  82. L. C. Gui
    View author publications

    Search author on:PubMed Google Scholar

  83. A. Q. Guo
    View author publications

    Search author on:PubMed Google Scholar

  84. F. K. Guo
    View author publications

    Search author on:PubMed Google Scholar

  85. J. C. Guo
    View author publications

    Search author on:PubMed Google Scholar

  86. J. Guo
    View author publications

    Search author on:PubMed Google Scholar

  87. Y. P. Guo
    View author publications

    Search author on:PubMed Google Scholar

  88. Z. H. Guo
    View author publications

    Search author on:PubMed Google Scholar

  89. A. Guskov
    View author publications

    Search author on:PubMed Google Scholar

  90. K. L. Han
    View author publications

    Search author on:PubMed Google Scholar

  91. L. Han
    View author publications

    Search author on:PubMed Google Scholar

  92. M. Han
    View author publications

    Search author on:PubMed Google Scholar

  93. X. Q. Hao
    View author publications

    Search author on:PubMed Google Scholar

  94. J. B. He
    View author publications

    Search author on:PubMed Google Scholar

  95. S. Q. He
    View author publications

    Search author on:PubMed Google Scholar

  96. X. G. He
    View author publications

    Search author on:PubMed Google Scholar

  97. Y. L. He
    View author publications

    Search author on:PubMed Google Scholar

  98. Z. B. He
    View author publications

    Search author on:PubMed Google Scholar

  99. Z. X. Heng
    View author publications

    Search author on:PubMed Google Scholar

  100. B. L. Hou
    View author publications

    Search author on:PubMed Google Scholar

  101. T. J. Hou
    View author publications

    Search author on:PubMed Google Scholar

  102. Y. R. Hou
    View author publications

    Search author on:PubMed Google Scholar

  103. C. Y. Hu
    View author publications

    Search author on:PubMed Google Scholar

  104. H. M. Hu
    View author publications

    Search author on:PubMed Google Scholar

  105. K. Hu
    View author publications

    Search author on:PubMed Google Scholar

  106. R. J. Hu
    View author publications

    Search author on:PubMed Google Scholar

  107. W. H. Hu
    View author publications

    Search author on:PubMed Google Scholar

  108. X. H. Hu
    View author publications

    Search author on:PubMed Google Scholar

  109. Y. C. Hu
    View author publications

    Search author on:PubMed Google Scholar

  110. J. Hua
    View author publications

    Search author on:PubMed Google Scholar

  111. G. S. Huang
    View author publications

    Search author on:PubMed Google Scholar

  112. J. S. Huang
    View author publications

    Search author on:PubMed Google Scholar

  113. M. Huang
    View author publications

    Search author on:PubMed Google Scholar

  114. Q. Y. Huang
    View author publications

    Search author on:PubMed Google Scholar

  115. W. Q. Huang
    View author publications

    Search author on:PubMed Google Scholar

  116. X. T. Huang
    View author publications

    Search author on:PubMed Google Scholar

  117. X. J. Huang
    View author publications

    Search author on:PubMed Google Scholar

  118. Y. B. Huang
    View author publications

    Search author on:PubMed Google Scholar

  119. Y. S. Huang
    View author publications

    Search author on:PubMed Google Scholar

  120. N. Hüsken
    View author publications

    Search author on:PubMed Google Scholar

  121. V. Ivanov
    View author publications

    Search author on:PubMed Google Scholar

  122. Q. P. Ji
    View author publications

    Search author on:PubMed Google Scholar

  123. J. J. Jia
    View author publications

    Search author on:PubMed Google Scholar

  124. S. Jia
    View author publications

    Search author on:PubMed Google Scholar

  125. Z. K. Jia
    View author publications

    Search author on:PubMed Google Scholar

  126. H. B. Jiang
    View author publications

    Search author on:PubMed Google Scholar

  127. J. Jiang
    View author publications

    Search author on:PubMed Google Scholar

  128. S. Z. Jiang
    View author publications

    Search author on:PubMed Google Scholar

  129. J. B. Jiao
    View author publications

    Search author on:PubMed Google Scholar

  130. Z. Jiao
    View author publications

    Search author on:PubMed Google Scholar

  131. H. J. Jing
    View author publications

    Search author on:PubMed Google Scholar

  132. X. L. Kang
    View author publications

    Search author on:PubMed Google Scholar

  133. X. S. Kang
    View author publications

    Search author on:PubMed Google Scholar

  134. B. C. Ke
    View author publications

    Search author on:PubMed Google Scholar

  135. M. Kenzie
    View author publications

    Search author on:PubMed Google Scholar

  136. A. Khoukaz
    View author publications

    Search author on:PubMed Google Scholar

  137. I. Koop
    View author publications

    Search author on:PubMed Google Scholar

  138. E. Kravchenko
    View author publications

    Search author on:PubMed Google Scholar

  139. A. Kuzmin
    View author publications

    Search author on:PubMed Google Scholar

  140. Y. Lei
    View author publications

    Search author on:PubMed Google Scholar

  141. E. Levichev
    View author publications

    Search author on:PubMed Google Scholar

  142. C. H. Li
    View author publications

    Search author on:PubMed Google Scholar

  143. C. Li
    View author publications

    Search author on:PubMed Google Scholar

  144. D. Y. Li
    View author publications

    Search author on:PubMed Google Scholar

  145. F. Li
    View author publications

    Search author on:PubMed Google Scholar

  146. G. Li
    View author publications

    Search author on:PubMed Google Scholar

  147. G. Li
    View author publications

    Search author on:PubMed Google Scholar

  148. H. B. Li
    View author publications

    Search author on:PubMed Google Scholar

  149. H. Li
    View author publications

    Search author on:PubMed Google Scholar

  150. H. N. Li
    View author publications

    Search author on:PubMed Google Scholar

  151. H. J. Li
    View author publications

    Search author on:PubMed Google Scholar

  152. H. L. Li
    View author publications

    Search author on:PubMed Google Scholar

  153. J. M. Li
    View author publications

    Search author on:PubMed Google Scholar

  154. J. Li
    View author publications

    Search author on:PubMed Google Scholar

  155. L. Li
    View author publications

    Search author on:PubMed Google Scholar

  156. L. Li
    View author publications

    Search author on:PubMed Google Scholar

  157. L. Y. Li
    View author publications

    Search author on:PubMed Google Scholar

  158. N. Li
    View author publications

    Search author on:PubMed Google Scholar

  159. P. R. Li
    View author publications

    Search author on:PubMed Google Scholar

  160. R. H. Li
    View author publications

    Search author on:PubMed Google Scholar

  161. S. Li
    View author publications

    Search author on:PubMed Google Scholar

  162. T. Li
    View author publications

    Search author on:PubMed Google Scholar

  163. W. J. Li
    View author publications

    Search author on:PubMed Google Scholar

  164. X. Li
    View author publications

    Search author on:PubMed Google Scholar

  165. X. H. Li
    View author publications

    Search author on:PubMed Google Scholar

  166. X. Q. Li
    View author publications

    Search author on:PubMed Google Scholar

  167. X. H. Li
    View author publications

    Search author on:PubMed Google Scholar

  168. Y. Li
    View author publications

    Search author on:PubMed Google Scholar

  169. Y. Y. Li
    View author publications

    Search author on:PubMed Google Scholar

  170. Z. J. Li
    View author publications

    Search author on:PubMed Google Scholar

  171. H. Liang
    View author publications

    Search author on:PubMed Google Scholar

  172. J. H. Liang
    View author publications

    Search author on:PubMed Google Scholar

  173. Y. T. Liang
    View author publications

    Search author on:PubMed Google Scholar

  174. G. R. Liao
    View author publications

    Search author on:PubMed Google Scholar

  175. L. Z. Liao
    View author publications

    Search author on:PubMed Google Scholar

  176. Y. Liao
    View author publications

    Search author on:PubMed Google Scholar

  177. C. X. Lin
    View author publications

    Search author on:PubMed Google Scholar

  178. D. X. Lin
    View author publications

    Search author on:PubMed Google Scholar

  179. X. S. Lin
    View author publications

    Search author on:PubMed Google Scholar

  180. B. J. Liu
    View author publications

    Search author on:PubMed Google Scholar

  181. C. W. Liu
    View author publications

    Search author on:PubMed Google Scholar

  182. D. Liu
    View author publications

    Search author on:PubMed Google Scholar

  183. F. Liu
    View author publications

    Search author on:PubMed Google Scholar

  184. G. M. Liu
    View author publications

    Search author on:PubMed Google Scholar

  185. H. B. Liu
    View author publications

    Search author on:PubMed Google Scholar

  186. J. Liu
    View author publications

    Search author on:PubMed Google Scholar

  187. J. J. Liu
    View author publications

    Search author on:PubMed Google Scholar

  188. J. B. Liu
    View author publications

    Search author on:PubMed Google Scholar

  189. K. Liu
    View author publications

    Search author on:PubMed Google Scholar

  190. K. Y. Liu
    View author publications

    Search author on:PubMed Google Scholar

  191. K. Liu
    View author publications

    Search author on:PubMed Google Scholar

  192. L. Liu
    View author publications

    Search author on:PubMed Google Scholar

  193. Q. Liu
    View author publications

    Search author on:PubMed Google Scholar

  194. S. B. Liu
    View author publications

    Search author on:PubMed Google Scholar

  195. T. Liu
    View author publications

    Search author on:PubMed Google Scholar

  196. X. Liu
    View author publications

    Search author on:PubMed Google Scholar

  197. Y. W. Liu
    View author publications

    Search author on:PubMed Google Scholar

  198. Y. Liu
    View author publications

    Search author on:PubMed Google Scholar

  199. Y. L. Liu
    View author publications

    Search author on:PubMed Google Scholar

  200. Z. Q. Liu
    View author publications

    Search author on:PubMed Google Scholar

  201. Z. Y. Liu
    View author publications

    Search author on:PubMed Google Scholar

  202. Z. W. Liu
    View author publications

    Search author on:PubMed Google Scholar

  203. I. Logashenko
    View author publications

    Search author on:PubMed Google Scholar

  204. Y. Long
    View author publications

    Search author on:PubMed Google Scholar

  205. C. G. Lu
    View author publications

    Search author on:PubMed Google Scholar

  206. J. X. Lu
    View author publications

    Search author on:PubMed Google Scholar

  207. N. Lu
    View author publications

    Search author on:PubMed Google Scholar

  208. Q. F. Lü
    View author publications

    Search author on:PubMed Google Scholar

  209. Y. Lu
    View author publications

    Search author on:PubMed Google Scholar

  210. Y. Lu
    View author publications

    Search author on:PubMed Google Scholar

  211. Z. Lu
    View author publications

    Search author on:PubMed Google Scholar

  212. P. Lukin
    View author publications

    Search author on:PubMed Google Scholar

  213. F. J. Luo
    View author publications

    Search author on:PubMed Google Scholar

  214. T. Luo
    View author publications

    Search author on:PubMed Google Scholar

  215. X. F. Luo
    View author publications

    Search author on:PubMed Google Scholar

  216. H. J. Lyu
    View author publications

    Search author on:PubMed Google Scholar

  217. X. R. Lyu
    View author publications

    Search author on:PubMed Google Scholar

  218. J. P. Ma
    View author publications

    Search author on:PubMed Google Scholar

  219. P. Ma
    View author publications

    Search author on:PubMed Google Scholar

  220. Y. Ma
    View author publications

    Search author on:PubMed Google Scholar

  221. Y. M. Ma
    View author publications

    Search author on:PubMed Google Scholar

  222. F. Maas
    View author publications

    Search author on:PubMed Google Scholar

  223. S. Malde
    View author publications

    Search author on:PubMed Google Scholar

  224. D. Matvienko
    View author publications

    Search author on:PubMed Google Scholar

  225. Z. X. Meng
    View author publications

    Search author on:PubMed Google Scholar

  226. R. Mitchell
    View author publications

    Search author on:PubMed Google Scholar

  227. A. Nefediev
    View author publications

    Search author on:PubMed Google Scholar

  228. Y. Nefedov
    View author publications

    Search author on:PubMed Google Scholar

  229. S. L. Olsen
    View author publications

    Search author on:PubMed Google Scholar

  230. Q. Ouyang
    View author publications

    Search author on:PubMed Google Scholar

  231. P. Pakhlov
    View author publications

    Search author on:PubMed Google Scholar

  232. G. Pakhlova
    View author publications

    Search author on:PubMed Google Scholar

  233. X. Pan
    View author publications

    Search author on:PubMed Google Scholar

  234. Y. Pan
    View author publications

    Search author on:PubMed Google Scholar

  235. E. Passemar
    View author publications

    Search author on:PubMed Google Scholar

  236. Y. P. Pei
    View author publications

    Search author on:PubMed Google Scholar

  237. H. P. Peng
    View author publications

    Search author on:PubMed Google Scholar

  238. L. Peng
    View author publications

    Search author on:PubMed Google Scholar

  239. X. Y. Peng
    View author publications

    Search author on:PubMed Google Scholar

  240. X. J. Peng
    View author publications

    Search author on:PubMed Google Scholar

  241. K. Peters
    View author publications

    Search author on:PubMed Google Scholar

  242. S. Pivovarov
    View author publications

    Search author on:PubMed Google Scholar

  243. E. Pyata
    View author publications

    Search author on:PubMed Google Scholar

  244. B. B. Qi
    View author publications

    Search author on:PubMed Google Scholar

  245. Y. Q. Qi
    View author publications

    Search author on:PubMed Google Scholar

  246. W. B. Qian
    View author publications

    Search author on:PubMed Google Scholar

  247. Y. Qian
    View author publications

    Search author on:PubMed Google Scholar

  248. C. F. Qiao
    View author publications

    Search author on:PubMed Google Scholar

  249. J. J. Qin
    View author publications

    Search author on:PubMed Google Scholar

  250. J. J. Qin
    View author publications

    Search author on:PubMed Google Scholar

  251. L. Q. Qin
    View author publications

    Search author on:PubMed Google Scholar

  252. X. S. Qin
    View author publications

    Search author on:PubMed Google Scholar

  253. T. L. Qiu
    View author publications

    Search author on:PubMed Google Scholar

  254. J. Rademacker
    View author publications

    Search author on:PubMed Google Scholar

  255. C. F. Redmer
    View author publications

    Search author on:PubMed Google Scholar

  256. H. Y. Sang
    View author publications

    Search author on:PubMed Google Scholar

  257. M. Saur
    View author publications

    Search author on:PubMed Google Scholar

  258. W. Shan
    View author publications

    Search author on:PubMed Google Scholar

  259. X. Y. Shan
    View author publications

    Search author on:PubMed Google Scholar

  260. L. L. Shang
    View author publications

    Search author on:PubMed Google Scholar

  261. M. Shao
    View author publications

    Search author on:PubMed Google Scholar

  262. L. Shekhtman
    View author publications

    Search author on:PubMed Google Scholar

  263. C. P. Shen
    View author publications

    Search author on:PubMed Google Scholar

  264. J. M. Shen
    View author publications

    Search author on:PubMed Google Scholar

  265. Z. T. Shen
    View author publications

    Search author on:PubMed Google Scholar

  266. H. C. Shi
    View author publications

    Search author on:PubMed Google Scholar

  267. X. D. Shi
    View author publications

    Search author on:PubMed Google Scholar

  268. B. Shwartz
    View author publications

    Search author on:PubMed Google Scholar

  269. A. Sokolov
    View author publications

    Search author on:PubMed Google Scholar

  270. J. J. Song
    View author publications

    Search author on:PubMed Google Scholar

  271. W. M. Song
    View author publications

    Search author on:PubMed Google Scholar

  272. Y. Song
    View author publications

    Search author on:PubMed Google Scholar

  273. Y. X. Song
    View author publications

    Search author on:PubMed Google Scholar

  274. A. Sukharev
    View author publications

    Search author on:PubMed Google Scholar

  275. J. F. Sun
    View author publications

    Search author on:PubMed Google Scholar

  276. L. Sun
    View author publications

    Search author on:PubMed Google Scholar

  277. X. M. Sun
    View author publications

    Search author on:PubMed Google Scholar

  278. Y. J. Sun
    View author publications

    Search author on:PubMed Google Scholar

  279. Z. P. Sun
    View author publications

    Search author on:PubMed Google Scholar

  280. J. Tang
    View author publications

    Search author on:PubMed Google Scholar

  281. S. S. Tang
    View author publications

    Search author on:PubMed Google Scholar

  282. Z. B. Tang
    View author publications

    Search author on:PubMed Google Scholar

  283. C. H. Tian
    View author publications

    Search author on:PubMed Google Scholar

  284. J. S. Tian
    View author publications

    Search author on:PubMed Google Scholar

  285. Y. Tian
    View author publications

    Search author on:PubMed Google Scholar

  286. Y. Tikhonov
    View author publications

    Search author on:PubMed Google Scholar

  287. K. Todyshev
    View author publications

    Search author on:PubMed Google Scholar

  288. T. Uglov
    View author publications

    Search author on:PubMed Google Scholar

  289. V. Vorobyev
    View author publications

    Search author on:PubMed Google Scholar

  290. B. D. Wan
    View author publications

    Search author on:PubMed Google Scholar

  291. B. L. Wang
    View author publications

    Search author on:PubMed Google Scholar

  292. B. Wang
    View author publications

    Search author on:PubMed Google Scholar

  293. D. Y. Wang
    View author publications

    Search author on:PubMed Google Scholar

  294. G. Y. Wang
    View author publications

    Search author on:PubMed Google Scholar

  295. G. L. Wang
    View author publications

    Search author on:PubMed Google Scholar

  296. H. L. Wang
    View author publications

    Search author on:PubMed Google Scholar

  297. J. Wang
    View author publications

    Search author on:PubMed Google Scholar

  298. J. H. Wang
    View author publications

    Search author on:PubMed Google Scholar

  299. J. C. Wang
    View author publications

    Search author on:PubMed Google Scholar

  300. M. L. Wang
    View author publications

    Search author on:PubMed Google Scholar

  301. R. Wang
    View author publications

    Search author on:PubMed Google Scholar

  302. R. Wang
    View author publications

    Search author on:PubMed Google Scholar

  303. S. B. Wang
    View author publications

    Search author on:PubMed Google Scholar

  304. W. Wang
    View author publications

    Search author on:PubMed Google Scholar

  305. W. P. Wang
    View author publications

    Search author on:PubMed Google Scholar

  306. X. C. Wang
    View author publications

    Search author on:PubMed Google Scholar

  307. X. D. Wang
    View author publications

    Search author on:PubMed Google Scholar

  308. X. L. Wang
    View author publications

    Search author on:PubMed Google Scholar

  309. X. L. Wang
    View author publications

    Search author on:PubMed Google Scholar

  310. X. P. Wang
    View author publications

    Search author on:PubMed Google Scholar

  311. X. F. Wang
    View author publications

    Search author on:PubMed Google Scholar

  312. Y. D. Wang
    View author publications

    Search author on:PubMed Google Scholar

  313. Y. P. Wang
    View author publications

    Search author on:PubMed Google Scholar

  314. Y. Q. Wang
    View author publications

    Search author on:PubMed Google Scholar

  315. Y. L. Wang
    View author publications

    Search author on:PubMed Google Scholar

  316. Y. G. Wang
    View author publications

    Search author on:PubMed Google Scholar

  317. Z. Y. Wang
    View author publications

    Search author on:PubMed Google Scholar

  318. Z. Y. Wang
    View author publications

    Search author on:PubMed Google Scholar

  319. Z. L. Wang
    View author publications

    Search author on:PubMed Google Scholar

  320. Z. G. Wang
    View author publications

    Search author on:PubMed Google Scholar

  321. D. H. Wei
    View author publications

    Search author on:PubMed Google Scholar

  322. X. L. Wei
    View author publications

    Search author on:PubMed Google Scholar

  323. X. M. Wei
    View author publications

    Search author on:PubMed Google Scholar

  324. Q. G. Wen
    View author publications

    Search author on:PubMed Google Scholar

  325. X. J. Wen
    View author publications

    Search author on:PubMed Google Scholar

  326. G. Wilkinson
    View author publications

    Search author on:PubMed Google Scholar

  327. B. Wu
    View author publications

    Search author on:PubMed Google Scholar

  328. J. J. Wu
    View author publications

    Search author on:PubMed Google Scholar

  329. L. Wu
    View author publications

    Search author on:PubMed Google Scholar

  330. P. Wu
    View author publications

    Search author on:PubMed Google Scholar

  331. T. W. Wu
    View author publications

    Search author on:PubMed Google Scholar

  332. Y. S. Wu
    View author publications

    Search author on:PubMed Google Scholar

  333. L. Xia
    View author publications

    Search author on:PubMed Google Scholar

  334. T. Xiang
    View author publications

    Search author on:PubMed Google Scholar

  335. C. W. Xiao
    View author publications

    Search author on:PubMed Google Scholar

  336. D. Xiao
    View author publications

    Search author on:PubMed Google Scholar

  337. M. Xiao
    View author publications

    Search author on:PubMed Google Scholar

  338. K. P. Xie
    View author publications

    Search author on:PubMed Google Scholar

  339. Y. H. Xie
    View author publications

    Search author on:PubMed Google Scholar

  340. Y. Xing
    View author publications

    Search author on:PubMed Google Scholar

  341. Z. Z. Xing
    View author publications

    Search author on:PubMed Google Scholar

  342. X. N. Xiong
    View author publications

    Search author on:PubMed Google Scholar

  343. F. R. Xu
    View author publications

    Search author on:PubMed Google Scholar

  344. J. Xu
    View author publications

    Search author on:PubMed Google Scholar

  345. L. L. Xu
    View author publications

    Search author on:PubMed Google Scholar

  346. Q. N. Xu
    View author publications

    Search author on:PubMed Google Scholar

  347. X. C. Xu
    View author publications

    Search author on:PubMed Google Scholar

  348. X. P. Xu
    View author publications

    Search author on:PubMed Google Scholar

  349. Y. C. Xu
    View author publications

    Search author on:PubMed Google Scholar

  350. Y. P. Xu
    View author publications

    Search author on:PubMed Google Scholar

  351. Y. Xu
    View author publications

    Search author on:PubMed Google Scholar

  352. Z. Z. Xu
    View author publications

    Search author on:PubMed Google Scholar

  353. D. W. Xuan
    View author publications

    Search author on:PubMed Google Scholar

  354. F. F. Xue
    View author publications

    Search author on:PubMed Google Scholar

  355. L. Yan
    View author publications

    Search author on:PubMed Google Scholar

  356. M. J. Yan
    View author publications

    Search author on:PubMed Google Scholar

  357. W. B. Yan
    View author publications

    Search author on:PubMed Google Scholar

  358. W. C. Yan
    View author publications

    Search author on:PubMed Google Scholar

  359. X. S. Yan
    View author publications

    Search author on:PubMed Google Scholar

  360. B. F. Yang
    View author publications

    Search author on:PubMed Google Scholar

  361. C. Yang
    View author publications

    Search author on:PubMed Google Scholar

  362. H. J. Yang
    View author publications

    Search author on:PubMed Google Scholar

  363. H. R. Yang
    View author publications

    Search author on:PubMed Google Scholar

  364. H. T. Yang
    View author publications

    Search author on:PubMed Google Scholar

  365. J. F. Yang
    View author publications

    Search author on:PubMed Google Scholar

  366. S. L. Yang
    View author publications

    Search author on:PubMed Google Scholar

  367. Y. D. Yang
    View author publications

    Search author on:PubMed Google Scholar

  368. Y. H. Yang
    View author publications

    Search author on:PubMed Google Scholar

  369. Y. S. Yang
    View author publications

    Search author on:PubMed Google Scholar

  370. Y. L. Yang
    View author publications

    Search author on:PubMed Google Scholar

  371. Z. W. Yang
    View author publications

    Search author on:PubMed Google Scholar

  372. Z. Y. Yang
    View author publications

    Search author on:PubMed Google Scholar

  373. D. L. Yao
    View author publications

    Search author on:PubMed Google Scholar

  374. H. Yin
    View author publications

    Search author on:PubMed Google Scholar

  375. X. H. Yin
    View author publications

    Search author on:PubMed Google Scholar

  376. N. Yokozaki
    View author publications

    Search author on:PubMed Google Scholar

  377. S. Y. You
    View author publications

    Search author on:PubMed Google Scholar

  378. Z. Y. You
    View author publications

    Search author on:PubMed Google Scholar

  379. C. X. Yu
    View author publications

    Search author on:PubMed Google Scholar

  380. F. S. Yu
    View author publications

    Search author on:PubMed Google Scholar

  381. G. L. Yu
    View author publications

    Search author on:PubMed Google Scholar

  382. H. L. Yu
    View author publications

    Search author on:PubMed Google Scholar

  383. J. S. Yu
    View author publications

    Search author on:PubMed Google Scholar

  384. J. Q. Yu
    View author publications

    Search author on:PubMed Google Scholar

  385. L. Yuan
    View author publications

    Search author on:PubMed Google Scholar

  386. X. B. Yuan
    View author publications

    Search author on:PubMed Google Scholar

  387. Z. Y. Yuan
    View author publications

    Search author on:PubMed Google Scholar

  388. Y. F. Yue
    View author publications

    Search author on:PubMed Google Scholar

  389. M. Zeng
    View author publications

    Search author on:PubMed Google Scholar

  390. S. Zeng
    View author publications

    Search author on:PubMed Google Scholar

  391. A. L. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  392. B. W. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  393. G. Y. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  394. G. Q. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  395. H. J. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  396. H. B. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  397. J. Y. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  398. J. L. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  399. J. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  400. L. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  401. L. M. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  402. Q. A. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  403. R. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  404. S. L. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  405. T. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  406. X. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  407. Y. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  408. Y. J. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  409. Y. X. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  410. Y. T. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  411. Y. F. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  412. Y. C. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  413. Y. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  414. Y. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  415. Y. M. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  416. Y. L. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  417. Z. H. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  418. Z. Y. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  419. Z. Y. Zhang
    View author publications

    Search author on:PubMed Google Scholar

  420. H. Y. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  421. J. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  422. L. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  423. M. G. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  424. Q. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  425. R. G. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  426. R. P. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  427. Y. X. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  428. Z. G. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  429. Z. X. Zhao
    View author publications

    Search author on:PubMed Google Scholar

  430. A. Zhemchugov
    View author publications

    Search author on:PubMed Google Scholar

  431. B. Zheng
    View author publications

    Search author on:PubMed Google Scholar

  432. L. Zheng
    View author publications

    Search author on:PubMed Google Scholar

  433. Q. B. Zheng
    View author publications

    Search author on:PubMed Google Scholar

  434. R. Zheng
    View author publications

    Search author on:PubMed Google Scholar

  435. Y. H. Zheng
    View author publications

    Search author on:PubMed Google Scholar

  436. X. H. Zhong
    View author publications

    Search author on:PubMed Google Scholar

  437. H. J. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  438. H. Q. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  439. H. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  440. S. H. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  441. X. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  442. X. K. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  443. X. P. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  444. X. R. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  445. Y. L. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  446. Y. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  447. Y. X. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  448. Z. Y. Zhou
    View author publications

    Search author on:PubMed Google Scholar

  449. J. Y. Zhu
    View author publications

    Search author on:PubMed Google Scholar

  450. K. Zhu
    View author publications

    Search author on:PubMed Google Scholar

  451. R. D. Zhu
    View author publications

    Search author on:PubMed Google Scholar

  452. R. L. Zhu
    View author publications

    Search author on:PubMed Google Scholar

  453. S. H. Zhu
    View author publications

    Search author on:PubMed Google Scholar

  454. Y. C. Zhu
    View author publications

    Search author on:PubMed Google Scholar

  455. Z. A. Zhu
    View author publications

    Search author on:PubMed Google Scholar

  456. V. Zhukova
    View author publications

    Search author on:PubMed Google Scholar

  457. V. Zhulanov
    View author publications

    Search author on:PubMed Google Scholar

  458. B. S. Zou
    View author publications

    Search author on:PubMed Google Scholar

  459. Y. B. Zuo
    View author publications

    Search author on:PubMed Google Scholar

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provided a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achasov, M., Ai, X.C., An, L.P. et al. STCF conceptual design report (Volume 1): Physics & detector. Front. Phys. 19, 14701 (2024). https://doi.org/10.1007/s11467-023-1333-z

Download citation

  • Received: 29 March 2023

  • Accepted: 21 July 2023

  • Published: 24 November 2023

  • Version of record: 24 November 2023

  • DOI: https://doi.org/10.1007/s11467-023-1333-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • electron–positron collider
  • tau-charm region
  • high luminosity
  • STCF detector
  • conceptual design
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature