这是indexloc提供的服务,不要输入任何密码
Skip to content

Added auto alpha tuning and exploration noise for sac. #80

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 16, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion test/continuous/test_ddpg.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from tianshou.policy import DDPGPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.exploration import GaussianNoise

if __name__ == '__main__':
from net import Actor, Critic
Expand Down Expand Up @@ -78,7 +79,7 @@ def test_ddpg(args=get_args()):
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy = DDPGPolicy(
actor, actor_optim, critic, critic_optim,
args.tau, args.gamma, args.exploration_noise,
args.tau, args.gamma, GaussianNoise(sigma=args.exploration_noise),
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=args.rew_norm,
ignore_done=args.ignore_done,
Expand Down
130 changes: 130 additions & 0 deletions test/continuous/test_sac_with_mcc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter

from tianshou.policy import SACPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv
from tianshou.exploration import OUNoise

if __name__ == '__main__':
from net import ActorProb, Critic
else: # pytest
from test.continuous.net import ActorProb, Critic


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='MountainCarContinuous-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=50000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=3e-4)
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument('--noise_std', type=float, default=0.5)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--auto_alpha', type=bool, default=True)
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--step-per-epoch', type=int, default=2400)
parser.add_argument('--collect-per-step', type=int, default=1)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=80)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=1.0/35.0)
parser.add_argument('--rew-norm', type=bool, default=False)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args


def test_sac(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
# train_envs = gym.make(args.task)
train_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
alpha = (target_entropy, log_alpha, alpha_optim)
else:
alpha = args.alpha

policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
args.tau, args.gamma, alpha,
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=args.rew_norm, ignore_done=True,
exploration_noise=OUNoise(0.0, args.noise_std))
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)

def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

def stop_fn(x):
return x >= env.spec.reward_threshold

# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer)
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()


if __name__ == '__main__':
test_sac()
5 changes: 3 additions & 2 deletions test/continuous/test_td3.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
from tianshou.policy import TD3Policy
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.exploration import GaussianNoise

if __name__ == '__main__':
from net import Actor, Critic
Expand Down Expand Up @@ -85,8 +86,8 @@ def test_td3(args=get_args()):
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3Policy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
args.tau, args.gamma, args.exploration_noise, args.policy_noise,
args.update_actor_freq, args.noise_clip,
args.tau, args.gamma, GaussianNoise(sigma=args.exploration_noise),
args.policy_noise, args.update_actor_freq, args.noise_clip,
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=args.rew_norm,
ignore_done=args.ignore_done,
Expand Down
4 changes: 3 additions & 1 deletion tianshou/exploration/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
from tianshou.exploration.random import OUNoise
from tianshou.exploration.random import BaseNoise, GaussianNoise, OUNoise

__all__ = [
'BaseNoise',
'GaussianNoise',
'OUNoise',
]
61 changes: 50 additions & 11 deletions tianshou/exploration/random.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,42 @@
import numpy as np
from typing import Union, Optional
from abc import ABC, abstractmethod


class OUNoise(object):
class BaseNoise(ABC, object):
"""The action noise base class."""

def __init__(self, **kwargs) -> None:
super(BaseNoise, self).__init__()

@abstractmethod
def __call__(self, **kwargs) -> np.ndarray:
"""Generate new noise."""
raise NotImplementedError

def reset(self, **kwargs) -> None:
"""Reset to the initial state."""
pass


class GaussianNoise(BaseNoise):
"""Class for vanilla gaussian process,
used for exploration in DDPG by default.
"""

def __init__(self,
mu: float = 0.0,
sigma: float = 1.0):
super().__init__()
self._mu = mu
assert 0 <= sigma, 'noise std should not be negative'
self._sigma = sigma

def __call__(self, size: tuple) -> np.ndarray:
return np.random.normal(self._mu, self._sigma, size)


class OUNoise(BaseNoise):
"""Class for Ornstein-Uhlenbeck process, as used for exploration in DDPG.
Usage:
::
Expand All @@ -19,26 +53,31 @@ class OUNoise(object):
"""

def __init__(self,
mu: float = 0.0,
sigma: float = 0.3,
theta: float = 0.15,
dt: float = 1e-2,
x0: Optional[Union[float, np.ndarray]] = None
) -> None:
self.alpha = theta * dt
self.beta = sigma * np.sqrt(dt)
self.x0 = x0
super(BaseNoise, self).__init__()
self._mu = mu
self._alpha = theta * dt
self._beta = sigma * np.sqrt(dt)
self._x0 = x0
self.reset()

def __call__(self, size: tuple, mu: float = .1) -> np.ndarray:
def __call__(self, size: tuple, mu: Optional[float] = None) -> np.ndarray:
"""Generate new noise. Return a ``numpy.ndarray`` which size is equal
to ``size``.
"""
if self.x is None or self.x.shape != size:
self.x = 0
r = self.beta * np.random.normal(size=size)
self.x = self.x + self.alpha * (mu - self.x) + r
return self.x
if self._x is None or self._x.shape != size:
self._x = 0
if mu is None:
mu = self._mu
r = self._beta * np.random.normal(size=size)
self._x = self._x + self._alpha * (mu - self._x) + r
return self._x

def reset(self) -> None:
"""Reset to the initial state."""
self.x = None
self._x = self._x0
36 changes: 16 additions & 20 deletions tianshou/policy/modelfree/ddpg.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from typing import Dict, Tuple, Union, Optional

from tianshou.policy import BasePolicy
# from tianshou.exploration import OUNoise
from tianshou.exploration import BaseNoise, GaussianNoise
from tianshou.data import Batch, ReplayBuffer, to_torch_as


Expand All @@ -21,8 +21,8 @@ class DDPGPolicy(BasePolicy):
:param float tau: param for soft update of the target network, defaults to
0.005.
:param float gamma: discount factor, in [0, 1], defaults to 0.99.
:param float exploration_noise: the noise intensity, add to the action,
defaults to 0.1.
:param BaseNoise exploration_noise: the exploration noise,
add to the action, defaults to ``GaussianNoise(sigma=0.1)``.
:param action_range: the action range (minimum, maximum).
:type action_range: (float, float)
:param bool reward_normalization: normalize the reward to Normal(0, 1),
Expand All @@ -45,7 +45,8 @@ def __init__(self,
critic_optim: torch.optim.Optimizer,
tau: float = 0.005,
gamma: float = 0.99,
exploration_noise: float = 0.1,
exploration_noise: Optional[BaseNoise]
= GaussianNoise(sigma=0.1),
action_range: Optional[Tuple[float, float]] = None,
reward_normalization: bool = False,
ignore_done: bool = False,
Expand All @@ -64,8 +65,7 @@ def __init__(self,
self._tau = tau
assert 0 <= gamma <= 1, 'gamma should in [0, 1]'
self._gamma = gamma
assert 0 <= exploration_noise, 'noise should not be negative'
self._eps = exploration_noise
self._noise = exploration_noise
assert action_range is not None
self._range = action_range
self._action_bias = (action_range[0] + action_range[1]) / 2
Expand All @@ -77,9 +77,9 @@ def __init__(self,
assert estimation_step > 0, 'estimation_step should greater than 0'
self._n_step = estimation_step

def set_eps(self, eps: float) -> None:
"""Set the eps for exploration."""
self._eps = eps
def set_exp_noise(self, noise: Optional[BaseNoise]) -> None:
"""Set the exploration noise."""
self._noise = noise

def train(self) -> None:
"""Set the module in training mode, except for the target network."""
Expand All @@ -106,7 +106,8 @@ def _target_q(self, buffer: ReplayBuffer,
batch = buffer[indice] # batch.obs_next: s_{t+n}
with torch.no_grad():
target_q = self.critic_old(batch.obs_next, self(
batch, model='actor_old', input='obs_next', eps=0).act)
batch, model='actor_old', input='obs_next',
explorating=False).act)
return target_q

def process_fn(self, batch: Batch, buffer: ReplayBuffer,
Expand All @@ -122,7 +123,7 @@ def forward(self, batch: Batch,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
model: str = 'actor',
input: str = 'obs',
eps: Optional[float] = None,
explorating: bool = True,
**kwargs) -> Batch:
"""Compute action over the given batch data.

Expand All @@ -142,14 +143,8 @@ def forward(self, batch: Batch,
obs = getattr(batch, input)
logits, h = model(obs, state=state, info=batch.info)
logits += self._action_bias
if eps is None:
eps = self._eps
if eps > 0:
# noise = np.random.normal(0, eps, size=logits.shape)
# logits += to_torch(noise, device=logits.device)
# noise = self.noise(logits.shape, eps)
logits += torch.randn(
size=logits.shape, device=logits.device) * eps
if self.training and explorating:
logits += to_torch_as(self._noise(logits.shape), logits)
logits = logits.clamp(self._range[0], self._range[1])
return Batch(act=logits, state=h)

Expand All @@ -161,7 +156,8 @@ def learn(self, batch: Batch, **kwargs) -> Dict[str, float]:
self.critic_optim.zero_grad()
critic_loss.backward()
self.critic_optim.step()
actor_loss = -self.critic(batch.obs, self(batch, eps=0).act).mean()
action = self(batch, explorating=False).act
actor_loss = -self.critic(batch.obs, action).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
Expand Down
Loading