这是indexloc提供的服务,不要输入任何密码
Skip to content

fix logger.write error in atari script #444

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Sep 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -148,3 +148,4 @@ MUJOCO_LOG.TXT
*.pkl
*.hdf5
wandb/
videos/
4 changes: 2 additions & 2 deletions examples/atari/atari_bcq.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import DiscreteBCQPolicy
from tianshou.trainer import offline_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -77,7 +77,7 @@ def test_discrete_bcq(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
)
# seed
Expand Down
9 changes: 5 additions & 4 deletions examples/atari/atari_c51.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import C51Policy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -75,10 +75,10 @@ def test_c51(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
train_envs = SubprocVectorEnv(
train_envs = ShmemVectorEnv(
[lambda: make_atari_env(args) for _ in range(args.training_num)]
)
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
)
# seed
Expand Down Expand Up @@ -141,7 +141,8 @@ def train_fn(epoch, env_step):
else:
eps = args.eps_train_final
policy.set_eps(eps)
logger.write('train/eps', env_step, eps)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})

def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
Expand Down
4 changes: 2 additions & 2 deletions examples/atari/atari_cql.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import DiscreteCQLPolicy
from tianshou.trainer import offline_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -76,7 +76,7 @@ def test_discrete_cql(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
)
# seed
Expand Down
4 changes: 2 additions & 2 deletions examples/atari/atari_crr.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import DiscreteCRRPolicy
from tianshou.trainer import offline_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -77,7 +77,7 @@ def test_discrete_crr(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
)
# seed
Expand Down
9 changes: 5 additions & 4 deletions examples/atari/atari_dqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import DQNPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -72,10 +72,10 @@ def test_dqn(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
train_envs = SubprocVectorEnv(
train_envs = ShmemVectorEnv(
[lambda: make_atari_env(args) for _ in range(args.training_num)]
)
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
)
# seed
Expand Down Expand Up @@ -135,7 +135,8 @@ def train_fn(epoch, env_step):
else:
eps = args.eps_train_final
policy.set_eps(eps)
logger.write('train/eps', env_step, eps)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})

def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
Expand Down
9 changes: 5 additions & 4 deletions examples/atari/atari_fqf.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import FQFPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -78,10 +78,10 @@ def test_fqf(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
train_envs = SubprocVectorEnv(
train_envs = ShmemVectorEnv(
[lambda: make_atari_env(args) for _ in range(args.training_num)]
)
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
)
# seed
Expand Down Expand Up @@ -158,7 +158,8 @@ def train_fn(epoch, env_step):
else:
eps = args.eps_train_final
policy.set_eps(eps)
logger.write('train/eps', env_step, eps)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})

def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
Expand Down
9 changes: 5 additions & 4 deletions examples/atari/atari_iqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import IQNPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -78,10 +78,10 @@ def test_iqn(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
train_envs = SubprocVectorEnv(
train_envs = ShmemVectorEnv(
[lambda: make_atari_env(args) for _ in range(args.training_num)]
)
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
)
# seed
Expand Down Expand Up @@ -153,7 +153,8 @@ def train_fn(epoch, env_step):
else:
eps = args.eps_train_final
policy.set_eps(eps)
logger.write('train/eps', env_step, eps)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})

def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
Expand Down
9 changes: 5 additions & 4 deletions examples/atari/atari_qrdqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import QRDQNPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -73,10 +73,10 @@ def test_qrdqn(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
train_envs = SubprocVectorEnv(
train_envs = ShmemVectorEnv(
[lambda: make_atari_env(args) for _ in range(args.training_num)]
)
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
)
# seed
Expand Down Expand Up @@ -137,7 +137,8 @@ def train_fn(epoch, env_step):
else:
eps = args.eps_train_final
policy.set_eps(eps)
logger.write('train/eps', env_step, eps)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})

def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
Expand Down
12 changes: 7 additions & 5 deletions examples/atari/atari_rainbow.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import RainbowPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -85,10 +85,10 @@ def test_rainbow(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
train_envs = SubprocVectorEnv(
train_envs = ShmemVectorEnv(
[lambda: make_atari_env(args) for _ in range(args.training_num)]
)
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
)
# seed
Expand Down Expand Up @@ -174,15 +174,17 @@ def train_fn(epoch, env_step):
else:
eps = args.eps_train_final
policy.set_eps(eps)
logger.write('train/eps', env_step, eps)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})
if not args.no_priority:
if env_step <= args.beta_anneal_step:
beta = args.beta - env_step / args.beta_anneal_step * \
(args.beta - args.beta_final)
else:
beta = args.beta_final
buffer.set_beta(beta)
logger.write('train/beta', env_step, beta)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/beta": beta})

def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
Expand Down
9 changes: 5 additions & 4 deletions examples/vizdoom/vizdoom_c51.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import SubprocVectorEnv
from tianshou.env import ShmemVectorEnv
from tianshou.policy import C51Policy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
Expand Down Expand Up @@ -72,13 +72,13 @@ def test_c51(args=get_args()):
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# make environments
train_envs = SubprocVectorEnv(
train_envs = ShmemVectorEnv(
[
lambda: Env(args.cfg_path, args.frames_stack, args.res)
for _ in range(args.training_num)
]
)
test_envs = SubprocVectorEnv(
test_envs = ShmemVectorEnv(
[
lambda: Env(args.cfg_path, args.frames_stack, args.res, args.save_lmp)
for _ in range(min(os.cpu_count() - 1, args.test_num))
Expand Down Expand Up @@ -144,7 +144,8 @@ def train_fn(epoch, env_step):
else:
eps = args.eps_train_final
policy.set_eps(eps)
logger.write('train/eps', env_step, eps)
if env_step % 1000 == 0:
logger.write("train/env_step", env_step, {"train/eps": eps})

def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
Expand Down