这是indexloc提供的服务,不要输入任何密码
Skip to content

Add NPG policy #344

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
Apr 21, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
- [Categorical DQN (C51)](https://arxiv.org/pdf/1707.06887.pdf)
- [Quantile Regression DQN (QRDQN)](https://arxiv.org/pdf/1710.10044.pdf)
- [Policy Gradient (PG)](https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf)
- [Natural Policy Gradient (NPG)](https://proceedings.neurips.cc/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf)
- [Advantage Actor-Critic (A2C)](https://openai.com/blog/baselines-acktr-a2c/)
- [Trust Region Policy Optimization (TRPO)](https://arxiv.org/pdf/1502.05477.pdf)
- [Proximal Policy Optimization (PPO)](https://arxiv.org/pdf/1707.06347.pdf)
Expand Down
5 changes: 5 additions & 0 deletions docs/api/tianshou.policy.rst
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,11 @@ On-policy
:undoc-members:
:show-inheritance:

.. autoclass:: tianshou.policy.NPGPolicy
:members:
:undoc-members:
:show-inheritance:

.. autoclass:: tianshou.policy.A2CPolicy
:members:
:undoc-members:
Expand Down
1 change: 1 addition & 0 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ Welcome to Tianshou!
* :class:`~tianshou.policy.C51Policy` `Categorical DQN <https://arxiv.org/pdf/1707.06887.pdf>`_
* :class:`~tianshou.policy.QRDQNPolicy` `Quantile Regression DQN <https://arxiv.org/pdf/1710.10044.pdf>`_
* :class:`~tianshou.policy.PGPolicy` `Policy Gradient <https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf>`_
* :class:`~tianshou.policy.NPGPolicy` `Natural Policy Gradient <https://proceedings.neurips.cc/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf>`_
* :class:`~tianshou.policy.A2CPolicy` `Advantage Actor-Critic <https://openai.com/blog/baselines-acktr-a2c/>`_
* :class:`~tianshou.policy.TRPOPolicy` `Trust Region Policy Optimization <https://arxiv.org/pdf/1502.05477.pdf>`_
* :class:`~tianshou.policy.PPOPolicy` `Proximal Policy Optimization <https://arxiv.org/pdf/1707.06347.pdf>`_
Expand Down
136 changes: 136 additions & 0 deletions test/continuous/test_npg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from torch.distributions import Independent, Normal

from tianshou.policy import NPGPolicy
from tianshou.utils import BasicLogger
from tianshou.env import DummyVectorEnv
from tianshou.utils.net.common import Net
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.utils.net.continuous import ActorProb, Critic


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v0')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--buffer-size', type=int, default=50000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.95)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=50000)
parser.add_argument('--step-per-collect', type=int, default=2048)
parser.add_argument('--repeat-per-collect', type=int,
default=2) # theoretically it should be 1
parser.add_argument('--batch-size', type=int, default=99999)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--training-num', type=int, default=16)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
# npg special
parser.add_argument('--gae-lambda', type=float, default=0.95)
parser.add_argument('--rew-norm', type=int, default=1)
parser.add_argument('--norm-adv', type=int, default=1)
parser.add_argument('--optim-critic-iters', type=int, default=5)
parser.add_argument('--actor-step-size', type=float, default=0.5)
args = parser.parse_known_args()[0]
return args


def test_npg(args=get_args()):
env = gym.make(args.task)
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -250
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
# you can also use tianshou.env.SubprocVectorEnv
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
activation=nn.Tanh, device=args.device)
actor = ActorProb(net, args.action_shape, max_action=args.max_action,
unbounded=True, device=args.device).to(args.device)
critic = Critic(Net(
args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device,
activation=nn.Tanh), device=args.device).to(args.device)
# orthogonal initialization
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(set(
actor.parameters()).union(critic.parameters()), lr=args.lr)

# replace DiagGuassian with Independent(Normal) which is equivalent
# pass *logits to be consistent with policy.forward
def dist(*logits):
return Independent(Normal(*logits), 1)

policy = NPGPolicy(
actor, critic, optim, dist,
discount_factor=args.gamma,
reward_normalization=args.rew_norm,
advantage_normalization=args.norm_adv,
gae_lambda=args.gae_lambda,
action_space=env.action_space,
optim_critic_iters=args.optim_critic_iters,
actor_step_size=args.actor_step_size)
# collector
train_collector = Collector(
policy, train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)))
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'npg')
writer = SummaryWriter(log_path)
logger = BasicLogger(writer)

def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold

# trainer
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.repeat_per_collect, args.test_num, args.batch_size,
step_per_collect=args.step_per_collect, stop_fn=stop_fn, save_fn=save_fn,
logger=logger)
assert stop_fn(result['best_reward'])

if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")


if __name__ == '__main__':
test_npg()
5 changes: 2 additions & 3 deletions test/continuous/test_trpo.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,7 @@ def get_args():
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=50000)
parser.add_argument('--step-per-collect', type=int, default=2048)
parser.add_argument('--repeat-per-collect', type=int,
default=2) # theoretically it should be 1
parser.add_argument('--repeat-per-collect', type=int, default=1)
parser.add_argument('--batch-size', type=int, default=99999)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--training-num', type=int, default=16)
Expand All @@ -43,7 +42,7 @@ def get_args():
parser.add_argument('--rew-norm', type=int, default=1)
parser.add_argument('--norm-adv', type=int, default=1)
parser.add_argument('--optim-critic-iters', type=int, default=5)
parser.add_argument('--max-kl', type=float, default=0.01)
parser.add_argument('--max-kl', type=float, default=0.005)
parser.add_argument('--backtrack-coeff', type=float, default=0.8)
parser.add_argument('--max-backtracks', type=int, default=10)

Expand Down
2 changes: 2 additions & 0 deletions tianshou/policy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from tianshou.policy.modelfree.qrdqn import QRDQNPolicy
from tianshou.policy.modelfree.pg import PGPolicy
from tianshou.policy.modelfree.a2c import A2CPolicy
from tianshou.policy.modelfree.npg import NPGPolicy
from tianshou.policy.modelfree.ddpg import DDPGPolicy
from tianshou.policy.modelfree.ppo import PPOPolicy
from tianshou.policy.modelfree.trpo import TRPOPolicy
Expand All @@ -25,6 +26,7 @@
"QRDQNPolicy",
"PGPolicy",
"A2CPolicy",
"NPGPolicy",
"DDPGPolicy",
"PPOPolicy",
"TRPOPolicy",
Expand Down
182 changes: 182 additions & 0 deletions tianshou/policy/modelfree/npg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from typing import Any, Dict, List, Type
from torch.distributions import kl_divergence


from tianshou.policy import A2CPolicy
from tianshou.data import Batch, ReplayBuffer


class NPGPolicy(A2CPolicy):
"""Implementation of Natural Policy Gradient.

https://proceedings.neurips.cc/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf

:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.nn.Module critic: the critic network. (s -> V(s))
:param torch.optim.Optimizer optim: the optimizer for actor and critic network.
:param dist_fn: distribution class for computing the action.
:type dist_fn: Type[torch.distributions.Distribution]
:param bool advantage_normalization: whether to do per mini-batch advantage
normalization. Default to True.
:param int optim_critic_iters: Number of times to optimize critic network per
update. Default to 5.
:param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation.
Default to 0.95.
:param bool reward_normalization: normalize estimated values to have std close to
1. Default to False.
:param int max_batchsize: the maximum size of the batch when computing GAE,
depends on the size of available memory and the memory cost of the
model; should be as large as possible within the memory constraint.
Default to 256.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
either "clip" (for simply clipping the action), "tanh" (for applying tanh
squashing) for now, or empty string for no bounding. Default to "clip".
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
to use option "action_scaling" or "action_bound_method". Default to None.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
"""

def __init__(
self,
actor: torch.nn.Module,
critic: torch.nn.Module,
optim: torch.optim.Optimizer,
dist_fn: Type[torch.distributions.Distribution],
advantage_normalization: bool = True,
optim_critic_iters: int = 5,
actor_step_size: float = 0.5,
**kwargs: Any,
) -> None:
super().__init__(actor, critic, optim, dist_fn, **kwargs)
del self._weight_vf, self._weight_ent, self._grad_norm
self._norm_adv = advantage_normalization
self._optim_critic_iters = optim_critic_iters
self._step_size = actor_step_size
# adjusts Hessian-vector product calculation for numerical stability
self._damping = 0.1

def process_fn(
self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray
) -> Batch:
batch = super().process_fn(batch, buffer, indice)
old_log_prob = []
with torch.no_grad():
for b in batch.split(self._batch, shuffle=False, merge_last=True):
old_log_prob.append(self(b).dist.log_prob(b.act))
batch.logp_old = torch.cat(old_log_prob, dim=0)
if self._norm_adv:
batch.adv = (batch.adv - batch.adv.mean()) / batch.adv.std()
return batch

def learn( # type: ignore
self, batch: Batch, batch_size: int, repeat: int, **kwargs: Any
) -> Dict[str, List[float]]:
actor_losses, vf_losses, kls = [], [], []
for step in range(repeat):
for b in batch.split(batch_size, merge_last=True):
# optimize actor
# direction: calculate villia gradient
dist = self(b).dist # TODO could come from batch
ratio = (dist.log_prob(b.act) - b.logp_old).exp().float()
ratio = ratio.reshape(ratio.size(0), -1).transpose(0, 1)
actor_loss = -(ratio * b.adv).mean()
flat_grads = self._get_flat_grad(
actor_loss, self.actor, retain_graph=True).detach()

# direction: calculate natural gradient
with torch.no_grad():
old_dist = self(b).dist

kl = kl_divergence(old_dist, dist).mean()
# calculate first order gradient of kl with respect to theta
flat_kl_grad = self._get_flat_grad(kl, self.actor, create_graph=True)
search_direction = -self._conjugate_gradients(
flat_grads, flat_kl_grad, nsteps=10)

# step
with torch.no_grad():
flat_params = torch.cat([param.data.view(-1)
for param in self.actor.parameters()])
new_flat_params = flat_params + self._step_size * search_direction
self._set_from_flat_params(self.actor, new_flat_params)
new_dist = self(b).dist
kl = kl_divergence(old_dist, new_dist).mean()

# optimize citirc
for _ in range(self._optim_critic_iters):
value = self.critic(b.obs).flatten()
vf_loss = F.mse_loss(b.returns, value)
self.optim.zero_grad()
vf_loss.backward()
self.optim.step()

actor_losses.append(actor_loss.item())
vf_losses.append(vf_loss.item())
kls.append(kl.item())

# update learning rate if lr_scheduler is given
if self.lr_scheduler is not None:
self.lr_scheduler.step()

return {
"loss/actor": actor_losses,
"loss/vf": vf_losses,
"kl": kls,
}

def _MVP(self, v: torch.Tensor, flat_kl_grad: torch.Tensor) -> torch.Tensor:
"""Matrix vector product."""
# caculate second order gradient of kl with respect to theta
kl_v = (flat_kl_grad * v).sum()
flat_kl_grad_grad = self._get_flat_grad(
kl_v, self.actor, retain_graph=True).detach()
return flat_kl_grad_grad + v * self._damping

def _conjugate_gradients(
self,
b: torch.Tensor,
flat_kl_grad: torch.Tensor,
nsteps: int = 10,
residual_tol: float = 1e-10
) -> torch.Tensor:
x = torch.zeros_like(b)
r, p = b.clone(), b.clone()
# Note: should be 'r, p = b - MVP(x)', but for x=0, MVP(x)=0.
# Change if doing warm start.
rdotr = r.dot(r)
for i in range(nsteps):
z = self._MVP(p, flat_kl_grad)
alpha = rdotr / p.dot(z)
x += alpha * p
r -= alpha * z
new_rdotr = r.dot(r)
if new_rdotr < residual_tol:
break
p = r + new_rdotr / rdotr * p
rdotr = new_rdotr
return x

def _get_flat_grad(
self, y: torch.Tensor, model: nn.Module, **kwargs: Any
) -> torch.Tensor:
grads = torch.autograd.grad(y, model.parameters(), **kwargs) # type: ignore
return torch.cat([grad.reshape(-1) for grad in grads])

def _set_from_flat_params(
self, model: nn.Module, flat_params: torch.Tensor
) -> nn.Module:
prev_ind = 0
for param in model.parameters():
flat_size = int(np.prod(list(param.size())))
param.data.copy_(
flat_params[prev_ind:prev_ind + flat_size].view(param.size()))
prev_ind += flat_size
return model
Loading