-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Add REINFORCE benchmark for mujoco #320
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
ee7f008
add reinforce benchmark
ChenDRAG dddd977
format doc
ChenDRAG cdd3d71
pep8 fix and rename mujoco_pg to mujoco_reinforce
ChenDRAG c390124
tiny update
Trinkle23897 ca9cac6
Update mujoco_reinforce.py
ChenDRAG ab1cb8a
gramma ix
ChenDRAG 4e84cf4
fix typo
Trinkle23897 de9d085
update
Trinkle23897 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Binary file added
BIN
+405 KB
examples/mujoco/benchmark/InvertedDoublePendulum-v2/reinforce/figure.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# Benchmark Result | ||
|
||
## Ant-v3 | ||
|
||
 | ||
|
||
## HalfCheetah-v3 | ||
|
||
 | ||
|
||
## Hopper-v3 | ||
|
||
 | ||
|
||
## Walker2d-v3 | ||
|
||
 | ||
|
||
## Swimmer-v3 | ||
|
||
 | ||
|
||
## Humanoid-v3 | ||
|
||
 | ||
|
||
## Reacher-v2 | ||
|
||
 | ||
|
||
## InvertedPendulum-v2 | ||
|
||
 | ||
|
||
## InvertedDoublePendulum-v2 | ||
|
||
 |
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
File renamed without changes
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
#!/usr/bin/env python3 | ||
|
||
import os | ||
import gym | ||
import torch | ||
import datetime | ||
import argparse | ||
import numpy as np | ||
from torch import nn | ||
from torch.optim.lr_scheduler import LambdaLR | ||
from torch.utils.tensorboard import SummaryWriter | ||
from torch.distributions import Independent, Normal | ||
|
||
from tianshou.policy import PGPolicy | ||
from tianshou.utils import BasicLogger | ||
from tianshou.env import SubprocVectorEnv | ||
from tianshou.utils.net.common import Net | ||
from tianshou.trainer import onpolicy_trainer | ||
from tianshou.utils.net.continuous import ActorProb | ||
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--task', type=str, default='HalfCheetah-v3') | ||
parser.add_argument('--seed', type=int, default=0) | ||
parser.add_argument('--buffer-size', type=int, default=4096) | ||
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) | ||
parser.add_argument('--lr', type=float, default=1e-3) | ||
parser.add_argument('--gamma', type=float, default=0.99) | ||
parser.add_argument('--epoch', type=int, default=100) | ||
parser.add_argument('--step-per-epoch', type=int, default=30000) | ||
parser.add_argument('--step-per-collect', type=int, default=2048) | ||
parser.add_argument('--repeat-per-collect', type=int, default=1) | ||
# batch-size >> step-per-collect means caculating all data in one singe forward. | ||
parser.add_argument('--batch-size', type=int, default=99999) | ||
parser.add_argument('--training-num', type=int, default=64) | ||
parser.add_argument('--test-num', type=int, default=10) | ||
parser.add_argument('--logdir', type=str, default='log') | ||
parser.add_argument('--render', type=float, default=0.) | ||
parser.add_argument( | ||
'--device', type=str, | ||
default='cuda' if torch.cuda.is_available() else 'cpu') | ||
parser.add_argument('--resume-path', type=str, default=None) | ||
# reinforce special | ||
parser.add_argument('--rew-norm', type=int, default=True) | ||
# "clip" option also works well. | ||
parser.add_argument('--action-bound-method', type=str, default="tanh") | ||
parser.add_argument('--lr-decay', type=int, default=True) | ||
return parser.parse_args() | ||
|
||
|
||
def test_reinforce(args=get_args()): | ||
env = gym.make(args.task) | ||
args.state_shape = env.observation_space.shape or env.observation_space.n | ||
args.action_shape = env.action_space.shape or env.action_space.n | ||
args.max_action = env.action_space.high[0] | ||
print("Observations shape:", args.state_shape) | ||
print("Actions shape:", args.action_shape) | ||
print("Action range:", np.min(env.action_space.low), | ||
np.max(env.action_space.high)) | ||
# train_envs = gym.make(args.task) | ||
train_envs = SubprocVectorEnv( | ||
[lambda: gym.make(args.task) for _ in range(args.training_num)], | ||
norm_obs=True) | ||
# test_envs = gym.make(args.task) | ||
test_envs = SubprocVectorEnv( | ||
[lambda: gym.make(args.task) for _ in range(args.test_num)], | ||
norm_obs=True, obs_rms=train_envs.obs_rms, update_obs_rms=False) | ||
|
||
# seed | ||
np.random.seed(args.seed) | ||
torch.manual_seed(args.seed) | ||
train_envs.seed(args.seed) | ||
test_envs.seed(args.seed) | ||
# model | ||
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, | ||
activation=nn.Tanh, device=args.device) | ||
actor = ActorProb(net_a, args.action_shape, max_action=args.max_action, | ||
unbounded=True, device=args.device).to(args.device) | ||
torch.nn.init.constant_(actor.sigma_param, -0.5) | ||
for m in actor.modules(): | ||
if isinstance(m, torch.nn.Linear): | ||
# orthogonal initialization | ||
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2)) | ||
torch.nn.init.zeros_(m.bias) | ||
# do last policy layer scaling, this will make initial actions have (close to) | ||
# 0 mean and std, and will help boost performances, | ||
# see https://arxiv.org/abs/2006.05990, Fig.24 for details | ||
for m in actor.mu.modules(): | ||
if isinstance(m, torch.nn.Linear): | ||
torch.nn.init.zeros_(m.bias) | ||
m.weight.data.copy_(0.01 * m.weight.data) | ||
|
||
optim = torch.optim.Adam(actor.parameters(), lr=args.lr) | ||
lr_scheduler = None | ||
if args.lr_decay: | ||
# decay learning rate to 0 linearly | ||
max_update_num = np.ceil( | ||
args.step_per_epoch / args.step_per_collect) * args.epoch | ||
|
||
lr_scheduler = LambdaLR( | ||
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num) | ||
|
||
def dist(*logits): | ||
return Independent(Normal(*logits), 1) | ||
|
||
policy = PGPolicy(actor, optim, dist, discount_factor=args.gamma, | ||
reward_normalization=args.rew_norm, action_scaling=True, | ||
action_bound_method=args.action_bound_method, | ||
lr_scheduler=lr_scheduler, action_space=env.action_space) | ||
|
||
# collector | ||
if args.training_num > 1: | ||
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs)) | ||
else: | ||
buffer = ReplayBuffer(args.buffer_size) | ||
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) | ||
test_collector = Collector(policy, test_envs) | ||
# log | ||
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S") | ||
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_reinforce' | ||
log_path = os.path.join(args.logdir, args.task, 'reinforce', log_file) | ||
writer = SummaryWriter(log_path) | ||
writer.add_text("args", str(args)) | ||
logger = BasicLogger(writer, update_interval=10) | ||
|
||
def save_fn(policy): | ||
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | ||
|
||
# trainer | ||
result = onpolicy_trainer( | ||
policy, train_collector, test_collector, args.epoch, args.step_per_epoch, | ||
args.repeat_per_collect, args.test_num, args.batch_size, | ||
step_per_collect=args.step_per_collect, save_fn=save_fn, logger=logger, | ||
test_in_train=False) | ||
|
||
# Let's watch its performance! | ||
policy.eval() | ||
test_envs.seed(args.seed) | ||
test_collector.reset() | ||
result = test_collector.collect(n_episode=args.test_num, render=args.render) | ||
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}') | ||
|
||
|
||
if __name__ == '__main__': | ||
test_reinforce() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.