这是indexloc提供的服务,不要输入任何密码
Skip to content

Add BipedalWalkerHardcore-v3 SAC example #177

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Aug 5, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
151 changes: 151 additions & 0 deletions examples/bipedal_hardcore_sac.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter

from tianshou.env import SubprocVectorEnv
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.policy import SACPolicy
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic


def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default="BipedalWalkerHardcore-v3")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.1)
parser.add_argument('--epoch', type=int, default=1000)
parser.add_argument('--step-per-epoch', type=int, default=2400)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=8)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--rew-norm', type=int, default=0)
parser.add_argument('--ignore-done', type=int, default=0)
parser.add_argument('--n-step', type=int, default=4)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args


class EnvWrapper(object):
"""Env wrapper for reward scale, action repeat and action noise"""
def __init__(self, task, action_repeat=3,
reward_scale=5, act_noise=0.3):
self._env = gym.make(task)
self.action_repeat = action_repeat
self.reward_scale = reward_scale
self.act_noise = act_noise

def __getattr__(self, name):
return getattr(self._env, name)

def step(self, action):
# add action noise
action += self.act_noise * (-2 * np.random.random(4) + 1)
r = 0.0
for _ in range(self.action_repeat):
obs_, reward_, done_, info_ = self._env.step(action)
# remove done reward penalty
if done_:
break
r = r + reward_
# scale reward
return obs_, self.reward_scale * r, done_, info_


def test_sac_bipedal(args=get_args()):
torch.set_num_threads(1) # we just need only one thread for NN

def IsStop(reward):
return reward >= 300 * 5

env = EnvWrapper(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]

train_envs = SubprocVectorEnv(
[lambda: EnvWrapper(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: EnvWrapper(args.task) for _ in range(args.test_num)])

# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)

# model
net_a = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
net_a, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)

net_c1 = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net_c1, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)

net_c2 = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic2 = Critic(net_c2, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
args.tau, args.gamma, args.alpha,
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=args.rew_norm,
ignore_done=args.ignore_done,
estimation_step=args.n_step)

# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)

def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))

# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=IsStop, save_fn=save_fn, writer=writer)

test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = EnvWrapper(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=16, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()


if __name__ == '__main__':
test_sac_bipedal()