这是indexloc提供的服务,不要输入任何密码
Skip to content

Improve collector #125

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 20 commits into from
Jul 12, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 22 additions & 16 deletions test/base/env.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,34 @@
import time
import gym
import time
from gym.spaces.discrete import Discrete


class MyTestEnv(gym.Env):
def __init__(self, size, sleep=0, dict_state=False):
"""This is a "going right" task. The task is to go right ``size`` steps.
"""

def __init__(self, size, sleep=0, dict_state=False, ma_rew=0):
self.size = size
self.sleep = sleep
self.dict_state = dict_state
self.ma_rew = ma_rew
self.action_space = Discrete(2)
self.reset()

def reset(self, state=0):
self.done = False
self.index = state
return self._get_dict_state()

def _get_reward(self):
"""Generate a non-scalar reward if ma_rew is True."""
x = int(self.done)
if self.ma_rew > 0:
return [x] * self.ma_rew
return x

def _get_dict_state(self):
"""Generate a dict_state if dict_state is True."""
return {'index': self.index} if self.dict_state else self.index

def step(self, action):
Expand All @@ -23,22 +38,13 @@ def step(self, action):
time.sleep(self.sleep)
if self.index == self.size:
self.done = True
if self.dict_state:
return {'index': self.index}, 0, True, {}
else:
return self.index, 0, True, {}
return self._get_dict_state(), self._get_reward(), self.done, {}
if action == 0:
self.index = max(self.index - 1, 0)
if self.dict_state:
return {'index': self.index}, 0, False, {'key': 1, 'env': self}
else:
return self.index, 0, False, {}
return self._get_dict_state(), self._get_reward(), self.done, \
{'key': 1, 'env': self} if self.dict_state else {}
elif action == 1:
self.index += 1
self.done = self.index == self.size
if self.dict_state:
return {'index': self.index}, int(self.done), self.done, \
{'key': 1, 'env': self}
else:
return self.index, int(self.done), self.done, \
{'key': 1, 'env': self}
return self._get_dict_state(), self._get_reward(), \
self.done, {'key': 1, 'env': self}
50 changes: 46 additions & 4 deletions test/base/test_collector.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,16 +27,16 @@ def learn(self):

def preprocess_fn(**kwargs):
# modify info before adding into the buffer
if kwargs.get('info', None) is not None:
# if info is not provided from env, it will be a ``Batch()``.
if not kwargs.get('info', Batch()).is_empty():
n = len(kwargs['obs'])
info = kwargs['info']
for i in range(n):
info[i].update(rew=kwargs['rew'][i])
return {'info': info}
# or
# return Batch(info=info)
# or: return Batch(info=info)
else:
return {}
return Batch()


class Logger(object):
Expand Down Expand Up @@ -119,6 +119,48 @@ def test_collector_with_dict_state():
print(batch['obs_next']['index'])


def test_collector_with_ma():
def reward_metric(x):
return x.sum()
env = MyTestEnv(size=5, sleep=0, ma_rew=4)
policy = MyPolicy()
c0 = Collector(policy, env, ReplayBuffer(size=100),
preprocess_fn, reward_metric=reward_metric)
r = c0.collect(n_step=3)['rew']
assert np.asanyarray(r).size == 1 and r == 0.
r = c0.collect(n_episode=3)['rew']
assert np.asanyarray(r).size == 1 and r == 4.
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, ma_rew=4)
for i in [2, 3, 4, 5]]
envs = VectorEnv(env_fns)
c1 = Collector(policy, envs, ReplayBuffer(size=100),
preprocess_fn, reward_metric=reward_metric)
r = c1.collect(n_step=10)['rew']
assert np.asanyarray(r).size == 1 and r == 4.
r = c1.collect(n_episode=[2, 1, 1, 2])['rew']
assert np.asanyarray(r).size == 1 and r == 4.
batch = c1.sample(10)
print(batch)
c0.buffer.update(c1.buffer)
obs = [
0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1.,
0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4., 0., 1., 0.,
1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.]
assert np.allclose(c0.buffer[:len(c0.buffer)].obs, obs)
rew = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1,
0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,
0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1]
assert np.allclose(c0.buffer[:len(c0.buffer)].rew,
[[x] * 4 for x in rew])
c2 = Collector(policy, envs, ReplayBuffer(size=100, stack_num=4),
preprocess_fn, reward_metric=reward_metric)
r = c2.collect(n_episode=[0, 0, 0, 10])['rew']
assert np.asanyarray(r).size == 1 and r == 4.
batch = c2.sample(10)
print(batch['obs_next'])


if __name__ == '__main__':
test_collector()
test_collector_with_dict_state()
test_collector_with_ma()
Loading