这是indexloc提供的服务,不要输入任何密码
Skip to content

Remove dummy net code #123

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 11 commits into from
Jul 9, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 2 additions & 16 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -206,26 +206,12 @@ test_envs = ts.env.VectorEnv([lambda: gym.make(task) for _ in range(test_num)])
Define the network:

```python
class Net(nn.Module):
def __init__(self, state_shape, action_shape):
super().__init__()
self.model = nn.Sequential(*[
nn.Linear(np.prod(state_shape), 128), nn.ReLU(inplace=True),
nn.Linear(128, 128), nn.ReLU(inplace=True),
nn.Linear(128, 128), nn.ReLU(inplace=True),
nn.Linear(128, np.prod(action_shape))
])
def forward(self, s, state=None, info={}):
if not isinstance(s, torch.Tensor):
s = torch.tensor(s, dtype=torch.float)
batch = s.shape[0]
logits = self.model(s.view(batch, -1))
return logits, state
from tianshou.utils.net.common import Net

env = gym.make(task)
state_shape = env.observation_space.shape or env.observation_space.n
action_shape = env.action_space.shape or env.action_space.n
net = Net(state_shape, action_shape)
net = Net(layer_num=2, state_shape=state_shape, action_shape=action_shape)
optim = torch.optim.Adam(net.parameters(), lr=lr)
```

Expand Down
15 changes: 15 additions & 0 deletions docs/api/tianshou.utils.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,3 +5,18 @@ tianshou.utils
:members:
:undoc-members:
:show-inheritance:

.. automodule:: tianshou.utils.net.common
:members:
:undoc-members:
:show-inheritance:

.. automodule:: tianshou.utils.net.discrete
:members:
:undoc-members:
:show-inheritance:

.. automodule:: tianshou.utils.net.continuous
:members:
:undoc-members:
:show-inheritance:
2 changes: 1 addition & 1 deletion docs/tutorials/dqn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ Tianshou supports any user-defined PyTorch networks and optimizers but with the
net = Net(state_shape, action_shape)
optim = torch.optim.Adam(net.parameters(), lr=1e-3)

The rules of self-defined networks are:
You can also have a try with those pre-defined networks in :mod:`~tianshou.utils.net.common`, :mod:`~tianshou.utils.net.discrete`, and :mod:`~tianshou.utils.net.continuous`. The rules of self-defined networks are:

1. Input: observation ``obs`` (may be a ``numpy.ndarray``, ``torch.Tensor``, dict, or self-defined class), hidden state ``state`` (for RNN usage), and other information ``info`` provided by the environment.
2. Output: some ``logits``, the next hidden state ``state``, and intermediate result during the policy forwarding procedure ``policy``. The logits could be a tuple instead of a ``torch.Tensor``. It depends on how the policy process the network output. For example, in PPO :cite:`PPO`, the return of the network might be ``(mu, sigma), state`` for Gaussian policy. The ``policy`` can be a Batch of torch.Tensor or other things, which will be stored in the replay buffer, and can be accessed in the policy update process (e.g. in ``policy.learn()``, the ``batch.policy`` is what you need).
Expand Down
17 changes: 8 additions & 9 deletions examples/ant_v2_ddpg.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
from tianshou.exploration import GaussianNoise

from continuous_net import Actor, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic


def get_args():
Expand Down Expand Up @@ -57,14 +57,13 @@ def test_ddpg(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
args.max_action, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(net, args.action_shape, args.max_action,
args.device).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic = Critic(net, args.device).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy = DDPGPolicy(
actor, actor_optim, critic, critic_optim,
Expand Down
17 changes: 8 additions & 9 deletions examples/ant_v2_sac.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv

from continuous_net import ActorProb, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic


def get_args():
Expand Down Expand Up @@ -58,18 +58,17 @@ def test_sac(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device, unbounded=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
Expand Down
17 changes: 8 additions & 9 deletions examples/ant_v2_td3.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
from tianshou.exploration import GaussianNoise

from continuous_net import Actor, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic


def get_args():
Expand Down Expand Up @@ -60,18 +60,17 @@ def test_td3(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
Comment on lines +63 to +73
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actually, TD3 cannot support share-critic, which causes #209.

critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3Policy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
Expand Down
81 changes: 0 additions & 81 deletions examples/continuous_net.py

This file was deleted.

17 changes: 8 additions & 9 deletions examples/halfcheetahBullet_v0_sac.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,8 @@
import pybullet_envs
except ImportError:
pass

from continuous_net import ActorProb, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic


def get_args():
Expand Down Expand Up @@ -66,18 +66,17 @@ def test_sac(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device, unbounded=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
Expand Down
16 changes: 8 additions & 8 deletions examples/point_maze_td3.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
from tianshou.exploration import GaussianNoise
from continuous_net import Actor, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
from mujoco.register import reg


Expand Down Expand Up @@ -63,18 +64,17 @@ def test_td3(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3Policy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
Expand Down
3 changes: 2 additions & 1 deletion examples/pong_a2c.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@
from tianshou.data import Collector, ReplayBuffer
from tianshou.env.atari import create_atari_environment

from discrete_net import Net, Actor, Critic
from tianshou.utils.net.discrete import Actor, Critic
from tianshou.utils.net.common import Net


def get_args():
Expand Down
3 changes: 1 addition & 2 deletions examples/pong_dqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,12 +6,11 @@

from tianshou.policy import DQNPolicy
from tianshou.env import SubprocVectorEnv
from tianshou.utils.net.discrete import DQN
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env.atari import create_atari_environment

from discrete_net import DQN


def get_args():
parser = argparse.ArgumentParser()
Expand Down
4 changes: 2 additions & 2 deletions examples/pong_ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,8 @@
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env.atari import create_atari_environment

from discrete_net import Net, Actor, Critic
from tianshou.utils.net.discrete import Actor, Critic
from tianshou.utils.net.common import Net


def get_args():
Expand Down
17 changes: 8 additions & 9 deletions examples/sac_mcc.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,8 @@
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv
from tianshou.exploration import OUNoise

from continuous_net import ActorProb, Critic
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic


def get_args():
Expand Down Expand Up @@ -62,18 +62,17 @@ def test_sac(args=get_args()):
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, device=args.device)
actor = ActorProb(
args.layer_num, args.state_shape, args.action_shape,
net, args.action_shape,
args.max_action, args.device, unbounded=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
net = Net(args.layer_num, args.state_shape,
args.action_shape, concat=True, device=args.device)
critic1 = Critic(net, args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic2 = Critic(net, args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)

if args.auto_alpha:
Expand Down
Loading