这是indexloc提供的服务,不要输入任何密码
Skip to content

spascoe/tidyjson

 
 

Repository files navigation

tidyjson

CRAN_Status_Badge Build Status Coverage Status

tidyjson graphs

tidyjson provides tools for turning complex json into tidy data.

Installation

Get the released version from CRAN:

install.packages("tidyjson")

or the development version from github:

devtools::install_github("jeremystan/tidyjson")

Examples

The following example takes a character vector of 500 documents in the worldbank dataset and spreads out all objects into new columns

library(tidyjson)
suppressMessages(library(dplyr))

worldbank %>% spread_all
#> # A tbl_json: 500 x 8 tibble with a "JSON" attribute
#>     `attr(., "JSON")` document.id    boardapprovaldate
#>                 <chr>       <int>                <chr>
#> 1  {"_id":{"$oid":...           1 2013-11-12T00:00:00Z
#> 2  {"_id":{"$oid":...           2 2013-11-04T00:00:00Z
#> 3  {"_id":{"$oid":...           3 2013-11-01T00:00:00Z
#> 4  {"_id":{"$oid":...           4 2013-10-31T00:00:00Z
#> 5  {"_id":{"$oid":...           5 2013-10-31T00:00:00Z
#> 6  {"_id":{"$oid":...           6 2013-10-31T00:00:00Z
#> 7  {"_id":{"$oid":...           7 2013-10-29T00:00:00Z
#> 8  {"_id":{"$oid":...           8 2013-10-29T00:00:00Z
#> 9  {"_id":{"$oid":...           9 2013-10-29T00:00:00Z
#> 10 {"_id":{"$oid":...          10 2013-10-29T00:00:00Z
#> # ... with 490 more rows, and 6 more variables: closingdate <chr>,
#> #   countryshortname <chr>, project_name <chr>, regionname <chr>,
#> #   totalamt <dbl>, `_id.$oid` <chr>

However, some objects in worldbank are arrays, this example shows how to quickly summarize the top level structure of a JSON collection

worldbank %>% gather_object %>% json_types %>% count(name, type)
#> Source: local data frame [8 x 3]
#> Groups: name [?]
#> 
#>                  name   type     n
#>                 <chr> <fctr> <int>
#> 1                 _id object   500
#> 2   boardapprovaldate string   500
#> 3         closingdate string   370
#> 4    countryshortname string   500
#> 5 majorsector_percent  array   500
#> 6        project_name string   500
#> 7          regionname string   500
#> 8            totalamt number   500

In order to capture the data in majorsector_percent we can use enter_object to enter into that object, gather_array to stack the array and spread_all to capture the object names under the array.

worldbank %>%
  enter_object(majorsector_percent) %>%
  gather_array %>%
  spread_all %>%
  select(-document.id, -array.index)
#> # A tbl_json: 1,405 x 2 tibble with a "JSON" attribute
#>     `attr(., "JSON")`                                    Name Percent
#>                 <chr>                                   <chr>   <dbl>
#> 1  {"Name":"Educat...                               Education      46
#> 2  {"Name":"Educat...                               Education      26
#> 3  {"Name":"Public... Public Administration, Law, and Justice      16
#> 4  {"Name":"Educat...                               Education      12
#> 5  {"Name":"Public... Public Administration, Law, and Justice      70
#> 6  {"Name":"Public... Public Administration, Law, and Justice      30
#> 7  {"Name":"Transp...                          Transportation     100
#> 8  {"Name":"Health...        Health and other social services     100
#> 9  {"Name":"Indust...                      Industry and trade      50
#> 10 {"Name":"Indust...                      Industry and trade      40
#> # ... with 1,395 more rows

API

Spreading objects into columns

  • spread_all() for spreading all object values into new columns, with nested objects having concatenated names

  • spread_values() for specifying a subset of object values to spread into new columns using the jstring(), jnumber() and jlogical() functions

Object navigation

  • enter_object() for entering into an object by name, discarding all other JSON (and rows without the corresponding object name) and allowing further operations on the object value

  • gather_object() for stacking all object name-value pairs by name, expanding the rows of the tbl_json object accordingly

Array navigation

  • gather_array() for stacking all array values by index, expanding the rows of the tbl_json object accordingly

JSON inspection

  • json_types() for identifying JSON data types

  • json_length() for computing the length of JSON data (can be larger than 1 for objects and arrays)

  • json_complexity() for computing the length of the unnested JSON, i.e., how many terminal leaves there are in a complex JSON structure

  • is_json family of functions for testing the type of JSON data

JSON summarization

  • json_structure() for creating a single fixed column data.frame that recursively structures arbitrary JSON data

  • json_schema() for representing the schema of complex JSON, unioned across disparate JSON documents, and collapsing arrays to their most complex type representation

Creating tbl_json objects

  • as.tbl_json() for converting a string or character vector into a tbl_json object, or for converting a data.frame with a JSON column using the json.column argument

  • tbl_json() for combining a data.frame and associated list derived from JSON data into a tbl_json object

  • read_json() for reading JSON data from a file

Converting tbl_json objects

  • as.character.tbl_json for converting the JSON attribute of a tbl_json object back into a JSON character string

Included JSON data

  • commits: commit data for the dplyr repo from github API

  • issues: issue data for the dplyr repo from github API

  • worldbank: world bank funded projects from jsonstudio

  • companies: startup company data from jsonstudio

Philosophy

The goal is to turn complex JSON data, which is often represented as nested lists, into tidy data frames that can be more easily manipulated.

  • Work on a single JSON document, or on a collection of related documents

  • Create pipelines with %>%, producing code that can be read from left to right

  • Guarantee the structure of the data produced, even if the input JSON structure changes (with the exception of spread_all)

  • Work with arbitrarily nested arrays or objects

  • Handle 'ragged' arrays and / or objects (varying lengths by document)

  • Allow for extraction of data in values or object names

  • Ensure edge cases are handled correctly (especially empty data)

  • Integrate seamlessly with dplyr, allowing tbl_json objects to pipe in and out of dplyr verbs where reasonable

Related Work

Tidyjson depends upon

  • magrritr for the %>% pipe operator
  • jsonlite for converting JSON strings into nested lists
  • purrr for list operators
  • tidyr for unnesting and spreading

Further, there are other R packages that can be used to better understand JSON data

About

Tidy your JSON data in R with tidyjson

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • R 100.0%