This project is an AI-powered Mental Health Chatbot Platform designed to provide supportive conversations and emotional guidance. It uses a custom-trained vector store to generate context-aware responses without relying on third-party APIs like OpenAI or LangChain.
Instead, the system is built on the DeepSeek R1 model, trained on curated mental health datasets, and implements a custom Retrieval-Augmented Generation (RAG) pipeline developed entirely on Kaggle. The generated embeddings are stored in a serialized file (vector_store.index) and used for fast, relevant retrieval during real-time chatbot interactions.
- Conversational AI chatbot designed for mental wellness support
- RAG-based vector store for accurate, context-aware responses
- Fully custom-built solution with no OpenAI API or LangChain
- Frontend UI including chatbot, analytics, meditation, and community modules
- Modular codebase with React + Vite frontend and Python backend
- Python
- Flask
- DeepSeek R1 (for embedding generation)
- FAISS / Custom Vector Store
- RAG Architecture (developed in Kaggle)
- No external AI APIs used
- React
- Vite
- JavaScript
- Tailwind CSS / CSS Modules
- Mental health documents (covering anxiety, depression, therapy tips, etc.) were encoded using DeepSeek R1 on Kaggle.
- These documents were transformed into embeddings and indexed with FAISS.
- The final serialized index is stored as
vector_store.index.
When a user sends a message:
- The message is converted into an embedding.
- The system searches
vector_store.indexfor similar entries. - Relevant document chunks are retrieved.
- A response is generated using this contextual data.
This enables intelligent, accurate, and emotionally sensitive responses without external API calls.
┌────────────────────────────┐
│ React Frontend (UI) │
└────────────┬───────────────┘
│
▼
┌──────────────────────────────┐
│ Python Backend (API) │
│ - Message Handling │
│ - Embedding Lookup │
│ - Response Generation │
└────────────┬─────────────────┘
│
▼
┌───────────────────────────────┐
│ vector_store.index │
│ - DeepSeek R1 Embeddings │
│ - Trained on Kaggle (RAG) │
└───────────────────────────────┘
mental-health-chatbot/
│
├── backend/
│ ├── mental_health_bot.py
│ ├── requirements.txt
│ └── data/
│ └── vector_store.index
│
├── frontend/
│ ├── public/
│ ├── index.html
│ ├── package.json
│ └── src/
│ ├── components/
│ │ ├── chat/
│ │ ├── ai-assessment/
│ │ ├── meditation/
│ │ ├── analytics/
│ │ ├── community/
│ │ ├── professionals/
│ │ └── settings/
│ ├── routes/
│ └── services/
cd backend
pip install -r requirements.txt
python mental_health_bot.pycd frontend
npm install
npm run dev- Expand dataset coverage (PTSD, ADHD, grief, etc.)
- Add emotion detection with visual/audio input
- Provide multilingual support (Hindi, Spanish, etc.)
- Deploy full-stack solution on cloud (e.g., Vercel + Render)
- Integrate secure user login and personalization
Contributions are welcome! Please fork the repository, make changes, and submit a pull request. For major feature proposals, please open an issue for discussion first.