这是indexloc提供的服务,不要输入任何密码
Skip to content

Conversation

@JoyceYuen
Copy link

Hi,
I like your code. It's concise and efficient.
But when i read the recommenders part, that's the "class UserBasedRecommender(UserRecommender)", i found the code in the method named estimated_preference can not guarantee that one neighbor's preference will multiple the his similarity rather than others.

It is the previous code:
prefs = prefs[~np.isnan(prefs)]
similarities = similarities[~np.isnan(prefs)]

    prefs_sim = np.sum(prefs[~np.isnan(similarities)] *
                         similarities[~np.isnan(similarities)])
    total_similarity = np.sum(similarities)

I take a simple example:

import numpy as np
p = np.array([np.nan, 3,4,5,np.nan,5,6,np.nan,9,10])
p
array([ nan, 3., 4., 5., nan, 5., 6., nan, 9., 10.])
s = np.array([1,np.nan,4,6,np.nan,6,7,8,9,10])
s
array([ 1., nan, 4., 6., nan, 6., 7., 8., 9., 10.])
p = p[~np.isnan(p)]
p
array([ 3., 4., 5., 5., 6., 9., 10.])
s = s[~np.isnan(p)]
s
array([ 1., nan, 4., 6., nan, 6., 7.])
p[~np.isnan(s)]
array([ 3., 5., 5., 9., 10.])
s[~np.isnan(s)]
array([ 1., 4., 6., 6., 7.])
p[~np.isnan(s)]*s[~np.isnan(s)]
array([ 3., 20., 30., 54., 70.])

it follows the steps as the code. as you can see, it gets a wrong result.

my code is like this:
temp_prefs = [~np.isnan(prefs)]
temp_similarities = [~np.isnan(similarities)]
noNaN_indices = np.logical_and(temp_prefs, temp_similarities)

    prefs_sim = np.sum(prefs[noNaN_indices[0] == True] *
                         similarities[noNaN_indices[0] == True])

    similarities = similarities[~np.isnan(similarities)]
    total_similarity = np.sum(similarities)

with the same example:

pp = np.array([np.nan,3,4,5,np.nan,5,6,np.nan,9,10])
pp
array([ nan, 3., 4., 5., nan, 5., 6., nan, 9., 10.])
ss = np.array([1,np.nan,4,6,np.nan,6,7,8,9,10])
ss
array([ 1., nan, 4., 6., nan, 6., 7., 8., 9., 10.])
tss = [~np.isnan(ss)]
tss
[array([ True, False, True, True, False, True, True, True, True, True], dtype=bool)]
tpp = [~np.isnan(pp)]
tpp
[array([False, True, True, True, False, True, True, False, True, True], dtype=bool)]
nonNaN = np.logical_and(tss,tpp)
nonNaN
array([[False, False, True, True, False, True, True, False, True,
True]], dtype=bool)
ss[nonNaN[0] == True] * pp[nonNaN[0] == True]
array([ 16., 30., 30., 42., 81., 100.])

as you can see, it gets the right answer.

if i misunderstood, please let me know. Thank you in advance.

Best Wishes

Hi, 
I like your code. It's concise and efficient.
But when i read the recommenders part, that's the "class UserBasedRecommender(UserRecommender)", i found the code in the method named estimated_preference can not guarantee that one neighbor's preference will multiple the his similarity rather than others.

It is the previous code:
        prefs = prefs[~np.isnan(prefs)]
        similarities = similarities[~np.isnan(prefs)]

        prefs_sim = np.sum(prefs[~np.isnan(similarities)] *
                             similarities[~np.isnan(similarities)])
        total_similarity = np.sum(similarities)

I take a simple example:
>>> import numpy as np
>>> p = np.array([np.nan, 3,4,5,np.nan,5,6,np.nan,9,10])
>>> p
array([ nan,   3.,   4.,   5.,  nan,   5.,   6.,  nan,   9.,  10.])
>>> s = np.array([1,np.nan,4,6,np.nan,6,7,8,9,10])
>>> s
array([  1.,  nan,   4.,   6.,  nan,   6.,   7.,   8.,   9.,  10.])
>>> p = p[~np.isnan(p)]
>>> p
array([  3.,   4.,   5.,   5.,   6.,   9.,  10.])
>>> s = s[~np.isnan(p)]
>>> s
array([  1.,  nan,   4.,   6.,  nan,   6.,   7.])
>>> p[~np.isnan(s)]
array([  3.,   5.,   5.,   9.,  10.])
>>> s[~np.isnan(s)]
array([ 1.,  4.,  6.,  6.,  7.])
>>> p[~np.isnan(s)]*s[~np.isnan(s)]
array([  3.,  20.,  30.,  54.,  70.])

it follows the steps as the code. as you can see, it gets a wrong result.

my code is like this:
        temp_prefs = [~np.isnan(prefs)]
        temp_similarities = [~np.isnan(similarities)]
        noNaN_indices = np.logical_and(temp_prefs, temp_similarities)
        
        prefs_sim = np.sum(prefs[noNaN_indices[0] == True] *
                             similarities[noNaN_indices[0] == True])
                             
        similarities = similarities[~np.isnan(similarities)]
        total_similarity = np.sum(similarities)

with the same example:
>>> pp = np.array([np.nan,3,4,5,np.nan,5,6,np.nan,9,10])
>>> pp
array([ nan,   3.,   4.,   5.,  nan,   5.,   6.,  nan,   9.,  10.])
>>> ss = np.array([1,np.nan,4,6,np.nan,6,7,8,9,10])
>>> ss
array([  1.,  nan,   4.,   6.,  nan,   6.,   7.,   8.,   9.,  10.])
>>> tss = [~np.isnan(ss)]
>>> tss
[array([ True, False,  True,  True, False,  True,  True,  True,  True,  True], dtype=bool)]
>>> tpp = [~np.isnan(pp)]
>>> tpp
[array([False,  True,  True,  True, False,  True,  True, False,  True,  True], dtype=bool)]
>>> nonNaN = np.logical_and(tss,tpp)
>>> nonNaN
array([[False, False,  True,  True, False,  True,  True, False,  True,
         True]], dtype=bool)
>>> ss[nonNaN[0] == True] * pp[nonNaN[0] == True]
array([  16.,   30.,   30.,   42.,   81.,  100.])

as you can see, it gets the right answer.

if i misunderstood, please let me know. Thank you in advance.

Best Wishes
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant